FAQ | This is a LIVE service | Changelog

Skip to content
Snippets Groups Projects
growth_control.py 31.8 KiB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000
import os
import math
from itertools import permutations, product, repeat, takewhile, groupby
from functools import partial, reduce
from operator import add, itemgetter
from collections import defaultdict
from subprocess import call
from typing import Dict, List, Tuple

import ast
import astor
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import matplotlib as mpl
from scipy.signal import argrelmax
from scipy.stats import gaussian_kde
from scipy.stats import ttest_ind
from more_itertools import interleave_longest

import common.statesN as f
import common.seg as seg
import common.edict as edict
import common.lin as lin
from common.seg import STissue
import grates as grs
import patternTransitions as p

geneNms: List[str] = ['"AG"',
                      '"AHP6"',
                      '"ANT"',
                      '"AP1"',
                      '"AP2"',
                      '"AP3"',
                      '"AS1"',
                      '"ATML1"',
                      '"CLV3"',
                      '"CUC1_2_3"',
                      '"ETTIN"',
                      '"FIL"',
                      '"LFY"',
                      '"MP"',
                      '"PHB_PHV"',
                      '"PI"',
                      '"PUCHI"',
                      '"REV"',
                      '"SEP1"',
                      '"SEP2"',
                      '"SEP3"',
                      '"STM"',
                      '"SUP"',
                      '"SVP"',
                      '"WUS"']

mpl.rcParams.update(mpl.rcParamsDefault)
sts_ts = f.states_per_t()

fst = itemgetter(0)
snd = itemgetter(1)

def set_plot_params(fontsize=11):
    sns.set_style("whitegrid", {'grid.linestyle':'--'})
    plt.rc('xtick', labelsize=fontsize)
    plt.rc('ytick', labelsize=fontsize)
    plt.rc('axes', labelsize=fontsize)
    params = {'legend.fontsize': fontsize}
    plt.rcParams.update(params)

class BExpr2():

    def __init__(self, e_str):
        self.e = ge(e_str)

    def __hash__(self):
        gns = sorted([hash(g) for g in getGenes(getTopExpr(self.e))])
        op = hash(ast.dump(getTopExpr(self.e).op))

        return sum(gns) + op

    def __eq__(self, other):
        return hash(self) == hash(other)

    def __repr__(self):
        import astor
        return astor.to_source(self.e).replace('"', '').strip()


class BExpr2Region():

    def __init__(self, t, ts, e_str):
        self.t = t
        self.e = ge(e_str)
        self.ts = ts

    def __hash__(self):
        return sum(get_sts_expr(self.ts, self.e, sts_ts[self.t]))

    def __eq__(self, other):
        return hash(self) == hash(other)


class GPairRegions():
    def __init__(self, t, ts, g1, g2):
        self.t = t
        self.g1 = g1
        self.g2 = g2
        self.e1 = ge("'{g1}' and '{g2}'".format(g1=g1, g2=g2))
        self.e2 = ge("'{g1}' and not '{g2}'".format(g1=g1, g2=g2))
        self.ts = ts

    def __hash__(self):
        sts = sts_ts[self.t]
        sts_e1 = get_sts_expr(self.ts, self.e1, sts)
        sts_e2 = get_sts_expr(self.ts, self.e2, sts)

        return (hash(frozenset(sts_e1)) +
                hash(frozenset(sts_e2)))

    def __eq__(self, other):
        return hash(self) == hash(other)

    def plot(self, txt=""):
        d = dict()
        grs_state = get_grs_state()
        sts = sts_ts[self.t]
        sts_e1 = get_sts_expr(self.ts, self.e1, sts)
        sts_e2 = get_sts_expr(self.ts, self.e2, sts)
        gr_e1 = meanor0(reduce(add, [grs_state[st] for st in sts_e1], []))
        gr_e2 = meanor0(reduce(add, [grs_state[st] for st in sts_e2], []))

        he, le = [e for e, gr in sorted([(self.e1, gr_e1), (self.e2, gr_e2)],
                                        key=snd, reverse=True)]

        for c in self.ts:
            if seg.evalB(getTopExpr(he), c.exprs):
                d[c.cid] = 100.0
            else:
                d[c.cid] = 0.5

        for c in self.ts:
            if seg.evalB(getTopExpr(le), c.exprs):
                d[c.cid] = -10.0

        f = plot_ts_q(self.ts, d,
                      lb="{g1}-{g2}".format(g1=self.g1, g2=self.g2),
                      bounds=(0, 1), txt=txt)

        return f

    def plot_distr(self):
        set_plot_params(fontsize=12)
        sns.set_style("white")
        cls = sns.color_palette("coolwarm")
        grs_state = get_grs_state()
        sts = sts_ts[self.t]
        sts_e1 = get_sts_expr(self.ts, self.e1, sts)
        sts_e2 = get_sts_expr(self.ts, self.e2, sts)
        grs_e1 = reduce(add, [grs_state[st] for st in sts_e1])
        grs_e2 = reduce(add, [grs_state[st] for st in sts_e2])

        gr_e1 = np.mean(reduce(add, [grs_state[st] for st in sts_e1]))
        gr_e2 = np.mean(reduce(add, [grs_state[st] for st in sts_e2]))

        h_grs, l_grs = [e for e, gr in sorted([(grs_e1, gr_e1), (grs_e2, gr_e2)],
                                              key=snd, reverse=True)]

        he, le = [e for e, gr in sorted([(self.e1, gr_e1), (self.e2, gr_e2)],
                                        key=snd, reverse=True)]

        fig = plt.figure(figsize=(3.5, 3.7))
        ax = fig.add_subplot('111')

        ax.set_xlim(-0.05, 0.18)
        
        sns.distplot(h_grs, bins=10, color=cls[-1], kde=True, ax=ax,
                     label=astor.to_source(he).replace("'", ""))
        sns.distplot(l_grs, bins=10, color=cls[0], kde=True, ax=ax,
                     label=astor.to_source(le).replace("'", ""))
        ax.set_xlabel(r'$\mu$m/h')
        plt.legend(fontsize=10, loc='upper right', frameon=False)
        plt.savefig("{g1}-{g2}-regions.png".format(g1=self.g1, g2=self.g2), dpi=300)
        plt.show()

        return

    def toPair(self):
        return (self.g1, self.g2)


def groupByRegion(t, ts, es: List[str]) -> Dict[int, List[str]]:
    res = defaultdict(list)

    regs = set([hash(BExpr2Region(t, ts, e)) for e in es])
    reg_ids = {reg:i for i, reg in enumerate(regs)}

    for e in es:
        e_rid = reg_ids[hash(BExpr2Region(t, ts, e))]
        res[e_rid].append(e)

    return res

def mean_gratio(ps):
    return meanor0([abs(v) for p, v in ps])

def mean_gratio_(ps):
    return meanor0([v for p, v in ps])

def groupByRegionGPairs(t: int,
                        ts: STissue,
                        ress: Dict[Tuple[str, str], float],
                        n=6,
                        prc=0.5):
    d = defaultdict(list)
    ps_nnan = [(GPairRegions(t, ts, p[0], p[1]), v) for p, v in ress
               if not math.isnan(v)]
    nps = int(np.ceil(len(ps_nnan)*prc))
    ps = sorted(ps_nnan,
                key=lambda x: abs(x[1]),
                reverse=True)[:nps]
    regs = set([hash(p) for p, v in ps])

    for p, v in ps:
        d[hash(p)].append((p.toPair(), v))

    d_ = sorted([(k, v) for k, v in d.items()],
                key=lambda ps: mean_gratio(ps[1]),
                reverse=True)[:n]

    return [(i+1, v) for i, (k, v) in zip(range(len(d_)), d_)]

def plotRegions(t, ts, d):
    fns = list()
    for rid, ps in d:
        r = GPairRegions(t, ts, ps[0][0][0], ps[0][0][1])
        f = r.plot(txt="{rid} ({gr:.3f})".format(rid=str(rid),
                                                 gr=mean_gratio(ps)))
        fns.append(f)

    montage_fimgs(fns, im_label="t{t}_regions".format(t=t))

    for fn in fns:
        os.remove(fn)

    return "t{t}_regions.png".format(t=t)

def cluster_states(grs_state: Dict[int, List[float]]):
    mgrs = {st:np.mean(grs) for st, grs in grs_state.items()}
    g = gaussian_kde(np.array(list(mgrs.values())))

    xs = np.arange(-0.05, 0.2, 0.001)
    ys = g.evaluate(xs)

    cms = argrelmax(ys)[0]

    xsm = np.array(xs[cms])
    ysm = np.array(ys[cms])

    cls = {st:np.argmin(np.abs(xsm - grm))
           for st, grm in mgrs.items()}

    return g, xsm, ysm, cls

def plot_clustering(g, xsm, ysm):
    xs = np.arange(-0.05, 0.2, 0.001)
    ys = g.evaluate(xs)
    cls = sns.color_palette()

    plt.plot(xs, ys, color=cls[0])
    plt.plot(xsm, ysm, 'o', color=cls[1])
    plt.xlabel("growth rate")
    plt.ylabel("density estimate")
    plt.savefig("clusters_grates_states.png", dpi=300)
    plt.show()

def get_grs_state() -> Dict[int, List[float]]:
    tss, linss = lin.mkSeries1(d="../data/FM1/tv/",
      	                       dExprs="../data/geneExpression/",
			       linDataLoc="../data/FM1/tracking_data/",
			       ft=lambda t: t in {10, 40, 96, 120, 132})
    lin.filterL1_st(tss)
    G = p.mkTGraphN()

    grates = grs.grates_avg_cons(tss, linss)
    grates_pats = p.addCombPatterns(grates, tss)
    grates_state = p.getGAnisosPerPattern(G, grates_pats)

    return grates_state

def ge(s: str): return ast.parse(s)

def construct_expr(nms, fns):
    return ge(" ".join(interleave_longest(nms, fns)))

def mk_bexprs(k, geneNms):
    not_genes = ["not {gn}".format(gn=gn) for gn in geneNms]
    not_gene_nms = geneNms + not_genes

    fnss = [['and', 'or']] * (k-1)

    for gns in permutations(not_gene_nms, k):
        for fns in product(*fnss):
            bexpr = construct_expr(gns, fns)
            yield bexpr

    return

def search_bexprs(ts, k, obj):
    ress = dict()
    for i, bexpr in enumerate(mk_bexprs(k, geneNms)):
        #cids = ts.filterGBExpr(bexpr)
        ress[bexpr] = obj(cids2=bexpr)

    return ress

def hash_expr(ts, e):
    return np.sum(ts.filterGBExpr(e))

def get_cids_highg(ts):
    sts = f.statesI()
    grs_state = get_grs_state()
    g, xsm, ysm, cls = cluster_states(grs_state)
    stsHigh = [st for st, cl in cls.items() if cl == 1]

    cids = reduce(add, [ts.filterGs(sts[st]) for st in stsHigh])

    return cids

def get_cids_sts(ts, sts):
    st_genes = f.statesI()
    return reduce(add, [ts.filterGs(st_genes[st]) for st in sts])

def bacc(ts, cids1, cids2):
    scids1 = set(cids1)
    scids2 = set(cids2)

    pos = sum([1 for c in ts if c.cid in scids1])
    neg = len(list(ts)) - pos

    tp = sum([1 for c in ts
              if c.cid in scids1 and c.cid in scids2])
    tn = sum([1 for c in ts
              if c.cid not in scids1 and c.cid not in scids2])

    if not pos == 0:
        tpr = tp / pos
    else:
        tpr = 1.0

    if not neg == 0:
        tnr = tn / neg
    else:
        tnr = 1.0

    return 0.5*(tpr + tnr)

def meanor0(xs):
    if xs:
        return np.mean(xs)
    else:
        return 0.0

def avg_grate(grates, cids2):
    grs_cids = [grates.get(cid, None) for cid in cids2]
    grs_cids_ = [gr for gr in grs_cids if gr]

    return meanor0(grs_cids_)

def gratio(xs, xs1):
    if not xs or not xs1:
        return 0.0

    m1 = np.mean(xs)
    m2 = np.mean(xs1)

    return (m1 - m2) / (m1 + m2)

def states_d(ts, cids2, sts, grs_state_m):
    sts_envs = f.statesI_env(seg.geneNms)
    e = getTopExpr(cids2)
    mgrs_sts_t = [grs_state_m[st] for st in sts
                  if seg.evalB(e, sts_envs[st])]
    mgrs_sts_f = [grs_state_m[st] for st in sts
                  if not seg.evalB(e, sts_envs[st])]

    return gratio(mgrs_sts_t, mgrs_sts_f)

def go_search(t, k):
    tss, linss = lin.mkSeries()
    lin.filterL1_st(tss)

    ts = tss[t]
    cids_pat = get_cids_highg(ts)
    bacc_obj = partial(bacc, ts=ts, cids1=cids_pat)

    ress = search_bexprs(ts, k, bacc_obj)

    return ress

def go_search1(t, k):
    tss, linss = lin.mkSeries()
    lin.filterL1_st(tss)
    ts = tss[t]

    grates = grs.grates_avg_cons(tss, linss)
    gr_obj = partial(avg_grate, grates=grates[t])

    ress = search_bexprs(ts, k, gr_obj)

    return ress

def get_scores(t, es_reg, reg_sts):
    tss, linss = lin.mkSeries()
    lin.filterL1_st(tss)
    ts = tss[t]
    sts = f.states_per_t()[t]

    scores = defaultdict(list)
    for ri, ess in es_reg.items():
        for es1 in ess:
            r_sts = reg_sts[ri]
            cids1 = get_cids_sts(ts, r_sts)
            cids2 = ts.filterGBExpr(ge(es1))
            s = bacc(ts, cids1, cids2)
            scores[ri].append((es1, s))

    return scores

def filterNonEmpty(ts, es):
    #an expression makes sense
    #if all the genes are expressed in the tissue
    es_ = list()
    for e in es:
        gs = ["'{g}'".format(g=g.replace("not", "").strip())
              for g in getGenes(getTopExpr(ge(e)))]
        gs_on = [g for g in gs if ts.filterGBExpr(ge(g))]
        if len(gs) == len(gs_on): es_.append(e)

    return es_

def const(cids2, y):
    return y

def go_search2(t, k):
    tss, linss = lin.mkSeries()
    lin.filterL1_st(tss)
    ts = tss[t]
    sts = f.states_per_t()[t]

    grs_state = get_grs_state()
    mgrs_state = {st:np.mean(grs)
                  for st, grs in grs_state.items()}
    st_gr_obj = partial(states_d,
                        ts=ts,
                        sts=sts,
                        grs_state_m=mgrs_state)

    ress = search_bexprs(ts, k, st_gr_obj)
    ress_ = pprint_list(ress)

    max_v = ress_[0][1]
    min_v = ress_[-1][1]
    ress_max_elems = list(takewhile(lambda p: p[1] == max_v, ress_))
    ress_min_elems = list(takewhile(lambda p: p[1] == min_v, reversed(ress_)))

    es = [e for e, v in ress_max_elems + ress_min_elems]
    es_reg = groupByRegion(t, ts, es)

    for rid, es in es_reg.items():
        es_ = [repr(e) for e in set([BExpr2(e) for e in es])]
        with open("reg{i}_t{t}_exprs.txt".format(i=rid, t=t), "w+") as fout:
            fout.write("\n".join(es_))

    plot_state_mgrs(t)
    reg_sts = {rid:get_sts_expr(ts, ge(es[0]), sts)
               for rid, es in es_reg.items()}

    for rid, es in es_reg.items():
        plot_ts_binary(ts, ts.filterGBExpr(ge(es[0])),
                       "reg{i}_t{t}".format(i=rid, t=t),
                       txt="states: " + ", ".join(list(map(str, reg_sts[rid]))))

    es_reg_ = dict()
    for rid, es in es_reg.items():
        es_reg_[rid] = filterNonEmpty(ts, list(repr(e) for e in set([BExpr2(e) for e in es])))


    return ress, es_reg_, reg_sts

def go_search3(t, k):
    tss, linss = lin.mkSeries()
    lin.filterL1(tss)
    ts = tss[t]
    sts = f.states_per_t()[t]

    def_obj = partial(const, y=0.0)
    ress = search_bexprs(ts, k, def_obj)
    ress_ = pprint_list(ress)

    es = [e for e, v in ress_]
    es_reg = groupByRegion(t, ts, es)

    reg_sts = {rid:get_sts_expr(ts, ge(es[0]), sts)
               for rid, es in es_reg.items()}

    return es_reg, reg_sts

def invert_dlist(d):
    d_ = dict()
    for k, xs in d.items():
        for x in xs:
            d_[x] = k

    return d_

def vis_stripplot(d):
    fig = plt.figure()
    ax = fig.add_subplot('111')
    sns.set_style("whitegrid", {'grid.linestyle':'--'})
    xs_labs = sorted(d.keys())
    ax.yaxis.set_major_locator(ticker.MultipleLocator(0.05))

    xs = reduce(add, [list(repeat(x, len(d[x])))
                      for i, x in enumerate(xs_labs)])
    ys = reduce(add, [d[x] for x in xs_labs])
    cls = sns.color_palette()
    sns.stripplot(xs, ys, palette=[cls[0]], size=5, alpha=0.75,
                  jitter=False)
    ax.set_xticks(list(range(len(xs_labs))))
    ax.set_ylabel("BAcc")
    ax.set_xlabel("expr length")

    return ax

def vis_stripplot_hue2(d, i):
    fig = plt.figure(figsize=(12, 6))
    ax = fig.add_subplot('111')
    sns.set_style("whitegrid", {'grid.linestyle':'--'})

    xs_labs = sorted(list(set([gn.replace("not", "").strip()
                               for gn in d.keys()])))

    xs = reduce(add, [list(repeat(x, len(d[x])*2))
                      for i, x in enumerate(xs_labs)])
    hs = reduce(add, [(list(repeat("g", len(d[x]))) +
                       list(repeat("not g", len(d[x]))))
                      for i, x in enumerate(xs_labs)])
    ys = reduce(add, [d[x] + d["not {x}".format(x=x)]
                      for i, x in enumerate(xs_labs)])

    cls = sns.color_palette('Blues')
    cls_not = sns.color_palette('Reds')
    sns.stripplot(x=xs, y=ys, hue=hs, palette=[cls[i], cls_not[i]],
                  size=4, alpha=0.6, dodge=True)
    ax.set_xticks(list(range(len(xs_labs))))
    ax.set_ylim((0.01, 0.11))
    plt.xticks(rotation=90)

    plt.savefig("grates_gene.png", dpi=300)

    plt.show()

def cellsToDat(fn, cells):
    #so we can use newman
    nvars = len(cells[0].exprs.keys()) + 5
    ncells = len(cells)
    ntpoints = 1

    header = "\n".join([str(ntpoints),
                        " ".join([str(ncells), str(nvars), "0"])])

    with open(fn, 'w+') as fout:
        fout.write("\n".join([header] + [cell.toOrganism() for cell in cells]))

def plot_ts_binary(ts_, cids, lb="region", txt=""):
    from copy import deepcopy
    ts = deepcopy(ts_)
    def toNewmanFn(fn):
        (fn, ext) = os.path.splitext(fn)
        return fn + "000" + ".tif"

    def toNewmanFnPng(fn):
        (fn, ext) = os.path.splitext(fn)
        return fn + "000" + ".png"

    def ind(ts, g):
        geneNms = list(ts)[0].geneNms
        return geneNms.index(g)

    convertCmd = "convert"
    confFile = "/Users/s1437009/Organism/tools/plot/bin/newmanInit.conf"
    visCmd = "/Users/s1437009/Organism/tools/plot/bin/newman"

    lbGene = "ANT"
    scids = set(cids)
    for c in ts:
        if c.cid in scids:
            c.exprs[lbGene] = True
        else:
            c.exprs[lbGene] = False

    cellsToDat(lb + ".data", list(ts))

    call([visCmd,
          "-shape", "sphereVolume",
          "-d", "3",
          lb + ".data",
          "-column", str(ind(ts, lbGene) + 1),
          "-schema", str(0),
          "-output", "tiff",
          lb,
          "-camera", confFile,
          "-size", str(720),
          "-min", str(-0.03),
          "-max", str(1.03)])

    call([convertCmd,
          toNewmanFn(lb),
          "-fill", "white",
          "-font", "Times-New-Roman",
          "-pointsize", str(30),
          "-undercolor", "'#85929E'",
          "-gravity", "North",
          "-annotate", "+0+5",
          "' {txt} '".format(txt=txt.replace("'", "")),
          "{lb}.png".format(lb=lb)])

    os.remove(lb+".data")
    os.remove(toNewmanFn(lb))

    call(["open",
          "{lb}.png".format(lb=lb)])

def plot_ts_q(ts_, d, lb="vals", bounds=(-0.03, 0.05), txt="", interactive=False, size=100, cm=3):
    from copy import deepcopy
    ts = deepcopy(ts_)

    def toNewmanFn(fn):
        (fn, ext) = os.path.splitext(fn)
        return fn + "000" + ".tif"

    def ind(ts, g):
        geneNms = list(ts)[0].geneNms
        return geneNms.index(g)

    confFile = "/Users/s1437009/Organism/tools/plot/bin/newmanInit.conf"
    visCmd = "/Users/s1437009/Organism/tools/plot/bin/newman"
    convertCmd = "convert"

    lbGene = "ANT"
    for c in ts:
        if c.cid in d:
            c.exprs[lbGene] = d[c.cid]

    cellsToDat(lb + ".data", list(ts))

    call([visCmd,
          "-shape", "sphereVolume",
          "-d", "3",
          lb + ".data",
          "-column", str(ind(ts, lbGene) + 1),
          "-schema", str(cm),
          "-output", "tiff",
          lb,
          "-min", str(bounds[0]),
          "-max", str(bounds[1]),
          "-size", str(size),
          "-camera", confFile])

    if lb != "":
        call([convertCmd,
              toNewmanFn(lb),
              "-fill", "white",
              "-font", "Times-New-Roman",
              "-pointsize", str(15),
              "-undercolor", "#696969",
              "-gravity", "North",
              "-annotate", "+0+0",
              " {txt} ".format(txt=txt),
              "{lb}.png".format(lb=lb)])
    else:
        call([convertCmd,
              toNewmanFn(lb),
              "{lb}.png".format(lb=lb)])

    if interactive:
        call(["open",
              "{lb}.png".format(lb=lb)])

    os.remove(lb+".data")
    os.remove(toNewmanFn(lb))

    return "{lb}.png".format(lb=lb)

def montage_fimgs(fns, im_label="montage"):
    montageCmd = "montage"
    n = len(fns)
    m = np.ceil(n / 3)
    k = min(n, 3)

    #collage all the images
    call([montageCmd] +
         fns +
         ["-tile",
          str(k) + "x" + str(m),
          "-geometry", "+20+20",
          im_label + ".png"])

def mark_state_gr(ts, grs_state):
    st_genes = f.states
    mgrs = dict([(st, np.mean(grs)) for st, grs in grs_state.items()])
    d = dict()
    for c in ts:
        d[c.cid] = mgrs.get(st_genes.get(c.getOnGenes(), None), 0.0)

    return d

def plot_state_mgrs(t):
    tss, linss = lin.mkSeries()
    lin.filterL1_st(tss)
    ts = tss[t]

    grs_state = get_grs_state()
    d = mark_state_gr(ts, grs_state)

    plot_ts_q(ts, d, "grates_sts_{t}h".format(t=t))


def get_st_cids_expr(ts, e, sts: List[int]):
    sts_envs = f.statesI_env(seg.geneNms)
    sts_genes = f.statesI()
    e = getTopExpr(e)

    sts_t = [st for st in sts if seg.evalB(e, sts_envs[st])]
    cids_t = set(reduce(add, [ts.filterGs(sts_genes[st]) for st in sts_t]))

    return cids_t

def get_sts_expr(ts, e, sts: List[int]) -> List[int]:
    sts_envs = f.statesI_env(seg.geneNms)
    sts_genes = f.statesI()
    e = getTopExpr(e)

    sts_t = [st for st in sts if seg.evalB(e, sts_envs[st])]

    return sts_t

def showR(r):
    e, gr = r
    e = e.replace("'", "")

    return "{e}, {gr:.2f}".format(e=e, gr=gr)

def getGenesOp(e):
    if type(e.op) is ast.And:
        return reduce(add, [getGenes(e1) for e1 in e.values])
    elif type(e.op) is ast.Or:
        return reduce(add, [getGenes(e1) for e1 in e.values])
    elif type(e.op) is ast.Not:
        return ["not {gn}".format(gn=reduce(add, getGenes(e.operand)))]

def getGenes(e):
    if type(e) is ast.UnaryOp or type(e) is ast.BoolOp:
        return getGenesOp(e)
    elif type(e) is ast.Str:
        return [e.s]
    elif type(e) is ast.Name:
        return [e.id]

def getTopExpr(e):
    return e.body[0].value

def expr(r):
    return r[0]

def val(r):
    return r[1]

def getResPerGene(ress):
    ress_gene = defaultdict(list)

    for expr, res in ress.items():
        for gn in getGenes(getTopExpr(expr)):
            ress_gene[gn].append(res)

    return ress_gene

def pprint_list(ress):
    import astor
    ress_ = sorted([(astor.to_source(k).replace('"', '').strip(), v)
                    for k, v in ress.items()],
                   key=lambda x: x[1],
                   reverse=True)

    return ress_

def getLinGBExpr(tss, e):
    return {t: ts.filterGBExpr(e) for t, ts in tss.items()}

def getValsT(cidsT, valsT, tpoints=set([10, 40, 96, 120, 132])):
    return {t:edict.gets(valsT[t], cids) for t, cids in cidsT.items()
            if t in tpoints}

def gratio(xs, xs1):
    if not xs or not xs1:
        return np.nan

    m1 = np.mean(xs)
    m2 = np.mean(xs1)

    return (m1 - m2) / (m1 + m2)

def fgr(tss, grates, g1, g2):
    bexpr1 = "'{g1}' and not '{g2}'".format(g1=g1, g2=g2)
    bexpr2 = "'{g1}' and '{g2}'".format(g1=g1, g2=g2)

    cidsT = getLinGBExpr(tss, seg.ge(bexpr2))
    cidsT1 = getLinGBExpr(tss, seg.ge(bexpr1))

    grs = getValsT(cidsT, grates)
    grs1 = getValsT(cidsT1, grates)

    return {t:gratio(grs[t], grs1[t])
            for t in grs.keys()}


def get_vals_exprs(tss, e1, e2, vals):
    cidsT = getLinGBExpr(tss, seg.ge(e1))
    cidsT1 = getLinGBExpr(tss, seg.ge(e2))

    grs = getValsT(cidsT, vals)
    grs1 = getValsT(cidsT1, vals)

    return grs, grs1
    
def rgd_gene(tss, g, grates):
    bexpr1 = "'{g1}'".format(g1=g)
    bexpr2 = "not '{g1}'".format(g1=g)

    grs, grs1 = get_vals_exprs(tss, bexpr1, bexpr2, grates)
    
    return {t:gratio(grs[t], grs1[t])
            for t in grs.keys()}

def rgd_gene_(tss, g, grates):
    bexpr1 = "'{g1}'".format(g1=g)
    bexpr2 = "not '{g1}'".format(g1=g)

    grs_t, grs1_t = get_vals_exprs(tss, bexpr1, bexpr2, grates)

    return gratio(reduce(add, grs_t.values()),
                  reduce(add, grs1_t.values()))

def rgd_state(st, grs_state):
    grs_ = reduce(add, [grs for st_id, grs in grs_state.items()
                        if st_id != st])
    gr = grs_state[st]

    return gratio(gr, grs_)

def pval_state(st, grs_state):
    grs_ = reduce(add, [grs for st_id, grs in grs_state.items()
                        if st_id != st])
    gr = grs_state[st]

    _, pval = ttest_ind(grs_, gr)

    return pval

def pvals_all_states(grs_state):
    return {st_id:pval_state(st_id, grs_state)
            for st_id in grs_state.keys()}

def rgd_all_states(grs_state):
    return {st_id:rgd_state(st_id, grs_state)
            for st_id in grs_state.keys()}

def go_single(tss, geneNms):
    d = {10:  dict(),
         40:  dict(),
         96:  dict(),
         120: dict(),
         132: dict()}
    
    tss, linss = lin.mkSeries()
    lin.filterL1_st(tss)
    grates = grs.grates_avg_cons(tss, linss)

    for g in geneNms:
        v = rgd_gene(tss, g, grates)
        for t, gr in v.items():
            d[t][g] = [gr]

    return d

def go_single_(tss, geneNms):
    d = dict()
    tss, linss = lin.mkSeries()
    lin.filterL1_st(tss)
    grates = grs.grates_avg_cons(tss, linss)

    for g in geneNms:
        v = rgd_gene_(tss, g, grates)
        d[g] = [v]

    return d


def calcTs(tss, grates, gs, f):
    d = {10:  dict(),
         40:  dict(),
         96:  dict(),
         120: dict(),
         132: dict()}

    for g1, g2 in product(gs, gs):
        print(g1, g2)
        v = f(tss, grates, g1, g2)
        for t, gratio in v.items():
            d[t][(g1, g2)] = gratio

    return d

def matrixify(k2_dict):
    from itertools import product

    kss = k2_dict.keys()
    kss1 = sorted(list(set([ks[0] for ks in kss])))
    kss2 = sorted(list(set([ks[1] for ks in kss])))

    feat_mat = np.zeros((len(kss1), len(kss2)))

    for (i, k1), (j, k2) in product(list(enumerate(kss1)),
                                    list(enumerate(kss2))):
        feat_mat[i, j] = k2_dict[(k1, k2)]

    return kss1, kss2, feat_mat

def matrixify_df(k2_dict, kss, df=""):
    from itertools import product

    kss1 = sorted(kss)
    kss2 = sorted(kss)

    feat_mat = np.empty((len(kss1), len(kss2)), dtype=str)

    for (i, k1), (j, k2) in product(list(enumerate(kss1)),
                                    list(enumerate(kss2))):
        print(i, j, k1, k2)
        feat_mat[i, j] = k2_dict.get((k1, k2), df)

    return kss1, kss2, feat_mat

def arrange_rows_cols(vals, gs):
    vals_ = dict()
    for i, g in enumerate(gs):
        vals_[g] = list(vals[:, i])

    return vals_

def mkStripPlotCombs(vals_, ax, cl, lb="", annot=True):
    set_plot_params()
    plt.rcParams['svg.fonttype'] = 'none'
    d = vals_
    from itertools import repeat
    from functools import reduce
    from operator import add

    xs_labs = sorted(d.keys())
    ax.yaxis.set_major_locator(ticker.MultipleLocator(0.4))

    xs = reduce(add, [list(repeat(x, len(d[x])))
                      for i, x in enumerate(xs_labs)])
    hs = reduce(add, [list(repeat("pos", len(d[x])))
                      for i, x in enumerate(xs_labs)])
    ys = reduce(add, [d[x] for x in xs_labs])
    cls = sns.color_palette("Blues")
    sns.stripplot(xs, ys, palette=[cls[cl]], size=5, label=lb)
    ax.set_xticks(list(range(len(xs_labs))))

    if annot:
        ax.text(21.3, -0.383, "ETTIN, STM", alpha=0.5, weight='ultralight')
        ax.text(12.2, 0.36, "SEP1, LFY", alpha=0.5, weight='ultralight')
    
    plt.xticks(rotation=90)

def go_combs(tss, linss, geneNms, f):
    grates = grs.grates_avg_cons(tss, linss)

    d = calcTs(tss, grates, geneNms, f)
    res = {}
    for t in d.keys():
        rr = sorted([(pair, gr) for pair, gr in d[t].items()
                     if not math.isnan(gr)],
                    key=lambda x: abs(x[1]),
                    reverse=True)
        rnan = [(pair, gr) for pair, gr in d[t].items() if math.isnan(gr)]
        res[t] = rr + rnan

    return res