Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
import os
import math
from itertools import permutations, product, repeat, takewhile, groupby
from functools import partial, reduce
from operator import add, itemgetter
from collections import defaultdict
from subprocess import call
from typing import Dict, List, Tuple
import ast
import astor
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
import matplotlib as mpl
from scipy.signal import argrelmax
from scipy.stats import gaussian_kde
from scipy.stats import ttest_ind
from more_itertools import interleave_longest
import common.statesN as f
import common.seg as seg
import common.edict as edict
import common.lin as lin
from common.seg import STissue
import grates as grs
import patternTransitions as p
geneNms: List[str] = ['"AG"',
'"AHP6"',
'"ANT"',
'"AP1"',
'"AP2"',
'"AP3"',
'"AS1"',
'"ATML1"',
'"CLV3"',
'"CUC1_2_3"',
'"ETTIN"',
'"FIL"',
'"LFY"',
'"MP"',
'"PHB_PHV"',
'"PI"',
'"PUCHI"',
'"REV"',
'"SEP1"',
'"SEP2"',
'"SEP3"',
'"STM"',
'"SUP"',
'"SVP"',
'"WUS"']
mpl.rcParams.update(mpl.rcParamsDefault)
sts_ts = f.states_per_t()
fst = itemgetter(0)
snd = itemgetter(1)
def set_plot_params(fontsize=11):
sns.set_style("whitegrid", {'grid.linestyle':'--'})
plt.rc('xtick', labelsize=fontsize)
plt.rc('ytick', labelsize=fontsize)
plt.rc('axes', labelsize=fontsize)
params = {'legend.fontsize': fontsize}
plt.rcParams.update(params)
class BExpr2():
def __init__(self, e_str):
self.e = ge(e_str)
def __hash__(self):
gns = sorted([hash(g) for g in getGenes(getTopExpr(self.e))])
op = hash(ast.dump(getTopExpr(self.e).op))
return sum(gns) + op
def __eq__(self, other):
return hash(self) == hash(other)
def __repr__(self):
import astor
return astor.to_source(self.e).replace('"', '').strip()
class BExpr2Region():
def __init__(self, t, ts, e_str):
self.t = t
self.e = ge(e_str)
self.ts = ts
def __hash__(self):
return sum(get_sts_expr(self.ts, self.e, sts_ts[self.t]))
def __eq__(self, other):
return hash(self) == hash(other)
class GPairRegions():
def __init__(self, t, ts, g1, g2):
self.t = t
self.g1 = g1
self.g2 = g2
self.e1 = ge("'{g1}' and '{g2}'".format(g1=g1, g2=g2))
self.e2 = ge("'{g1}' and not '{g2}'".format(g1=g1, g2=g2))
self.ts = ts
def __hash__(self):
sts = sts_ts[self.t]
sts_e1 = get_sts_expr(self.ts, self.e1, sts)
sts_e2 = get_sts_expr(self.ts, self.e2, sts)
return (hash(frozenset(sts_e1)) +
hash(frozenset(sts_e2)))
def __eq__(self, other):
return hash(self) == hash(other)
def plot(self, txt=""):
d = dict()
grs_state = get_grs_state()
sts = sts_ts[self.t]
sts_e1 = get_sts_expr(self.ts, self.e1, sts)
sts_e2 = get_sts_expr(self.ts, self.e2, sts)
gr_e1 = meanor0(reduce(add, [grs_state[st] for st in sts_e1], []))
gr_e2 = meanor0(reduce(add, [grs_state[st] for st in sts_e2], []))
he, le = [e for e, gr in sorted([(self.e1, gr_e1), (self.e2, gr_e2)],
key=snd, reverse=True)]
for c in self.ts:
if seg.evalB(getTopExpr(he), c.exprs):
d[c.cid] = 100.0
else:
d[c.cid] = 0.5
for c in self.ts:
if seg.evalB(getTopExpr(le), c.exprs):
d[c.cid] = -10.0
f = plot_ts_q(self.ts, d,
lb="{g1}-{g2}".format(g1=self.g1, g2=self.g2),
bounds=(0, 1), txt=txt)
return f
def plot_distr(self):
set_plot_params(fontsize=12)
sns.set_style("white")
cls = sns.color_palette("coolwarm")
grs_state = get_grs_state()
sts = sts_ts[self.t]
sts_e1 = get_sts_expr(self.ts, self.e1, sts)
sts_e2 = get_sts_expr(self.ts, self.e2, sts)
grs_e1 = reduce(add, [grs_state[st] for st in sts_e1])
grs_e2 = reduce(add, [grs_state[st] for st in sts_e2])
gr_e1 = np.mean(reduce(add, [grs_state[st] for st in sts_e1]))
gr_e2 = np.mean(reduce(add, [grs_state[st] for st in sts_e2]))
h_grs, l_grs = [e for e, gr in sorted([(grs_e1, gr_e1), (grs_e2, gr_e2)],
key=snd, reverse=True)]
he, le = [e for e, gr in sorted([(self.e1, gr_e1), (self.e2, gr_e2)],
key=snd, reverse=True)]
fig = plt.figure(figsize=(3.5, 3.7))
ax = fig.add_subplot('111')
ax.set_xlim(-0.05, 0.18)
sns.distplot(h_grs, bins=10, color=cls[-1], kde=True, ax=ax,
label=astor.to_source(he).replace("'", ""))
sns.distplot(l_grs, bins=10, color=cls[0], kde=True, ax=ax,
label=astor.to_source(le).replace("'", ""))
ax.set_xlabel(r'$\mu$m/h')
plt.legend(fontsize=10, loc='upper right', frameon=False)
plt.savefig("{g1}-{g2}-regions.png".format(g1=self.g1, g2=self.g2), dpi=300)
plt.show()
return
def toPair(self):
return (self.g1, self.g2)
def groupByRegion(t, ts, es: List[str]) -> Dict[int, List[str]]:
res = defaultdict(list)
regs = set([hash(BExpr2Region(t, ts, e)) for e in es])
reg_ids = {reg:i for i, reg in enumerate(regs)}
for e in es:
e_rid = reg_ids[hash(BExpr2Region(t, ts, e))]
res[e_rid].append(e)
return res
def mean_gratio(ps):
return meanor0([abs(v) for p, v in ps])
def mean_gratio_(ps):
return meanor0([v for p, v in ps])
def groupByRegionGPairs(t: int,
ts: STissue,
ress: Dict[Tuple[str, str], float],
n=6,
prc=0.5):
d = defaultdict(list)
ps_nnan = [(GPairRegions(t, ts, p[0], p[1]), v) for p, v in ress
if not math.isnan(v)]
nps = int(np.ceil(len(ps_nnan)*prc))
ps = sorted(ps_nnan,
key=lambda x: abs(x[1]),
reverse=True)[:nps]
regs = set([hash(p) for p, v in ps])
for p, v in ps:
d[hash(p)].append((p.toPair(), v))
d_ = sorted([(k, v) for k, v in d.items()],
key=lambda ps: mean_gratio(ps[1]),
reverse=True)[:n]
return [(i+1, v) for i, (k, v) in zip(range(len(d_)), d_)]
def plotRegions(t, ts, d):
fns = list()
for rid, ps in d:
r = GPairRegions(t, ts, ps[0][0][0], ps[0][0][1])
f = r.plot(txt="{rid} ({gr:.3f})".format(rid=str(rid),
gr=mean_gratio(ps)))
fns.append(f)
montage_fimgs(fns, im_label="t{t}_regions".format(t=t))
for fn in fns:
os.remove(fn)
return "t{t}_regions.png".format(t=t)
def cluster_states(grs_state: Dict[int, List[float]]):
mgrs = {st:np.mean(grs) for st, grs in grs_state.items()}
g = gaussian_kde(np.array(list(mgrs.values())))
xs = np.arange(-0.05, 0.2, 0.001)
ys = g.evaluate(xs)
cms = argrelmax(ys)[0]
xsm = np.array(xs[cms])
ysm = np.array(ys[cms])
cls = {st:np.argmin(np.abs(xsm - grm))
for st, grm in mgrs.items()}
return g, xsm, ysm, cls
def plot_clustering(g, xsm, ysm):
xs = np.arange(-0.05, 0.2, 0.001)
ys = g.evaluate(xs)
cls = sns.color_palette()
plt.plot(xs, ys, color=cls[0])
plt.plot(xsm, ysm, 'o', color=cls[1])
plt.xlabel("growth rate")
plt.ylabel("density estimate")
plt.savefig("clusters_grates_states.png", dpi=300)
plt.show()
def get_grs_state() -> Dict[int, List[float]]:
tss, linss = lin.mkSeries1(d="../data/FM1/tv/",
dExprs="../data/geneExpression/",
linDataLoc="../data/FM1/tracking_data/",
ft=lambda t: t in {10, 40, 96, 120, 132})
lin.filterL1_st(tss)
G = p.mkTGraphN()
grates = grs.grates_avg_cons(tss, linss)
grates_pats = p.addCombPatterns(grates, tss)
grates_state = p.getGAnisosPerPattern(G, grates_pats)
return grates_state
def ge(s: str): return ast.parse(s)
def construct_expr(nms, fns):
return ge(" ".join(interleave_longest(nms, fns)))
def mk_bexprs(k, geneNms):
not_genes = ["not {gn}".format(gn=gn) for gn in geneNms]
not_gene_nms = geneNms + not_genes
fnss = [['and', 'or']] * (k-1)
for gns in permutations(not_gene_nms, k):
for fns in product(*fnss):
bexpr = construct_expr(gns, fns)
yield bexpr
return
def search_bexprs(ts, k, obj):
ress = dict()
for i, bexpr in enumerate(mk_bexprs(k, geneNms)):
#cids = ts.filterGBExpr(bexpr)
ress[bexpr] = obj(cids2=bexpr)
return ress
def hash_expr(ts, e):
return np.sum(ts.filterGBExpr(e))
def get_cids_highg(ts):
sts = f.statesI()
grs_state = get_grs_state()
g, xsm, ysm, cls = cluster_states(grs_state)
stsHigh = [st for st, cl in cls.items() if cl == 1]
cids = reduce(add, [ts.filterGs(sts[st]) for st in stsHigh])
return cids
def get_cids_sts(ts, sts):
st_genes = f.statesI()
return reduce(add, [ts.filterGs(st_genes[st]) for st in sts])
def bacc(ts, cids1, cids2):
scids1 = set(cids1)
scids2 = set(cids2)
pos = sum([1 for c in ts if c.cid in scids1])
neg = len(list(ts)) - pos
tp = sum([1 for c in ts
if c.cid in scids1 and c.cid in scids2])
tn = sum([1 for c in ts
if c.cid not in scids1 and c.cid not in scids2])
if not pos == 0:
tpr = tp / pos
else:
tpr = 1.0
if not neg == 0:
tnr = tn / neg
else:
tnr = 1.0
return 0.5*(tpr + tnr)
def meanor0(xs):
if xs:
return np.mean(xs)
else:
return 0.0
def avg_grate(grates, cids2):
grs_cids = [grates.get(cid, None) for cid in cids2]
grs_cids_ = [gr for gr in grs_cids if gr]
return meanor0(grs_cids_)
def gratio(xs, xs1):
if not xs or not xs1:
return 0.0
m1 = np.mean(xs)
m2 = np.mean(xs1)
return (m1 - m2) / (m1 + m2)
def states_d(ts, cids2, sts, grs_state_m):
sts_envs = f.statesI_env(seg.geneNms)
e = getTopExpr(cids2)
mgrs_sts_t = [grs_state_m[st] for st in sts
if seg.evalB(e, sts_envs[st])]
mgrs_sts_f = [grs_state_m[st] for st in sts
if not seg.evalB(e, sts_envs[st])]
return gratio(mgrs_sts_t, mgrs_sts_f)
def go_search(t, k):
tss, linss = lin.mkSeries()
lin.filterL1_st(tss)
ts = tss[t]
cids_pat = get_cids_highg(ts)
bacc_obj = partial(bacc, ts=ts, cids1=cids_pat)
ress = search_bexprs(ts, k, bacc_obj)
return ress
def go_search1(t, k):
tss, linss = lin.mkSeries()
lin.filterL1_st(tss)
ts = tss[t]
grates = grs.grates_avg_cons(tss, linss)
gr_obj = partial(avg_grate, grates=grates[t])
ress = search_bexprs(ts, k, gr_obj)
return ress
def get_scores(t, es_reg, reg_sts):
tss, linss = lin.mkSeries()
lin.filterL1_st(tss)
ts = tss[t]
sts = f.states_per_t()[t]
scores = defaultdict(list)
for ri, ess in es_reg.items():
for es1 in ess:
r_sts = reg_sts[ri]
cids1 = get_cids_sts(ts, r_sts)
cids2 = ts.filterGBExpr(ge(es1))
s = bacc(ts, cids1, cids2)
scores[ri].append((es1, s))
return scores
def filterNonEmpty(ts, es):
#an expression makes sense
#if all the genes are expressed in the tissue
es_ = list()
for e in es:
gs = ["'{g}'".format(g=g.replace("not", "").strip())
for g in getGenes(getTopExpr(ge(e)))]
gs_on = [g for g in gs if ts.filterGBExpr(ge(g))]
if len(gs) == len(gs_on): es_.append(e)
return es_
def const(cids2, y):
return y
def go_search2(t, k):
tss, linss = lin.mkSeries()
lin.filterL1_st(tss)
ts = tss[t]
sts = f.states_per_t()[t]
grs_state = get_grs_state()
mgrs_state = {st:np.mean(grs)
for st, grs in grs_state.items()}
st_gr_obj = partial(states_d,
ts=ts,
sts=sts,
grs_state_m=mgrs_state)
ress = search_bexprs(ts, k, st_gr_obj)
ress_ = pprint_list(ress)
max_v = ress_[0][1]
min_v = ress_[-1][1]
ress_max_elems = list(takewhile(lambda p: p[1] == max_v, ress_))
ress_min_elems = list(takewhile(lambda p: p[1] == min_v, reversed(ress_)))
es = [e for e, v in ress_max_elems + ress_min_elems]
es_reg = groupByRegion(t, ts, es)
for rid, es in es_reg.items():
es_ = [repr(e) for e in set([BExpr2(e) for e in es])]
with open("reg{i}_t{t}_exprs.txt".format(i=rid, t=t), "w+") as fout:
fout.write("\n".join(es_))
plot_state_mgrs(t)
reg_sts = {rid:get_sts_expr(ts, ge(es[0]), sts)
for rid, es in es_reg.items()}
for rid, es in es_reg.items():
plot_ts_binary(ts, ts.filterGBExpr(ge(es[0])),
"reg{i}_t{t}".format(i=rid, t=t),
txt="states: " + ", ".join(list(map(str, reg_sts[rid]))))
es_reg_ = dict()
for rid, es in es_reg.items():
es_reg_[rid] = filterNonEmpty(ts, list(repr(e) for e in set([BExpr2(e) for e in es])))
return ress, es_reg_, reg_sts
def go_search3(t, k):
tss, linss = lin.mkSeries()
lin.filterL1(tss)
ts = tss[t]
sts = f.states_per_t()[t]
def_obj = partial(const, y=0.0)
ress = search_bexprs(ts, k, def_obj)
ress_ = pprint_list(ress)
es = [e for e, v in ress_]
es_reg = groupByRegion(t, ts, es)
reg_sts = {rid:get_sts_expr(ts, ge(es[0]), sts)
for rid, es in es_reg.items()}
return es_reg, reg_sts
def invert_dlist(d):
d_ = dict()
for k, xs in d.items():
for x in xs:
d_[x] = k
return d_
def vis_stripplot(d):
fig = plt.figure()
ax = fig.add_subplot('111')
sns.set_style("whitegrid", {'grid.linestyle':'--'})
xs_labs = sorted(d.keys())
ax.yaxis.set_major_locator(ticker.MultipleLocator(0.05))
xs = reduce(add, [list(repeat(x, len(d[x])))
for i, x in enumerate(xs_labs)])
ys = reduce(add, [d[x] for x in xs_labs])
cls = sns.color_palette()
sns.stripplot(xs, ys, palette=[cls[0]], size=5, alpha=0.75,
jitter=False)
ax.set_xticks(list(range(len(xs_labs))))
ax.set_ylabel("BAcc")
ax.set_xlabel("expr length")
return ax
def vis_stripplot_hue2(d, i):
fig = plt.figure(figsize=(12, 6))
ax = fig.add_subplot('111')
sns.set_style("whitegrid", {'grid.linestyle':'--'})
xs_labs = sorted(list(set([gn.replace("not", "").strip()
for gn in d.keys()])))
xs = reduce(add, [list(repeat(x, len(d[x])*2))
for i, x in enumerate(xs_labs)])
hs = reduce(add, [(list(repeat("g", len(d[x]))) +
list(repeat("not g", len(d[x]))))
for i, x in enumerate(xs_labs)])
ys = reduce(add, [d[x] + d["not {x}".format(x=x)]
for i, x in enumerate(xs_labs)])
cls = sns.color_palette('Blues')
cls_not = sns.color_palette('Reds')
sns.stripplot(x=xs, y=ys, hue=hs, palette=[cls[i], cls_not[i]],
size=4, alpha=0.6, dodge=True)
ax.set_xticks(list(range(len(xs_labs))))
ax.set_ylim((0.01, 0.11))
plt.xticks(rotation=90)
plt.savefig("grates_gene.png", dpi=300)
plt.show()
def cellsToDat(fn, cells):
#so we can use newman
nvars = len(cells[0].exprs.keys()) + 5
ncells = len(cells)
ntpoints = 1
header = "\n".join([str(ntpoints),
" ".join([str(ncells), str(nvars), "0"])])
with open(fn, 'w+') as fout:
fout.write("\n".join([header] + [cell.toOrganism() for cell in cells]))
def plot_ts_binary(ts_, cids, lb="region", txt=""):
from copy import deepcopy
ts = deepcopy(ts_)
def toNewmanFn(fn):
(fn, ext) = os.path.splitext(fn)
return fn + "000" + ".tif"
def toNewmanFnPng(fn):
(fn, ext) = os.path.splitext(fn)
return fn + "000" + ".png"
def ind(ts, g):
geneNms = list(ts)[0].geneNms
return geneNms.index(g)
convertCmd = "convert"
confFile = "/Users/s1437009/Organism/tools/plot/bin/newmanInit.conf"
visCmd = "/Users/s1437009/Organism/tools/plot/bin/newman"
lbGene = "ANT"
scids = set(cids)
for c in ts:
if c.cid in scids:
c.exprs[lbGene] = True
else:
c.exprs[lbGene] = False
cellsToDat(lb + ".data", list(ts))
call([visCmd,
"-shape", "sphereVolume",
"-d", "3",
lb + ".data",
"-column", str(ind(ts, lbGene) + 1),
"-schema", str(0),
"-output", "tiff",
lb,
"-camera", confFile,
"-size", str(720),
"-min", str(-0.03),
"-max", str(1.03)])
call([convertCmd,
toNewmanFn(lb),
"-fill", "white",
"-font", "Times-New-Roman",
"-pointsize", str(30),
"-undercolor", "'#85929E'",
"-gravity", "North",
"-annotate", "+0+5",
"' {txt} '".format(txt=txt.replace("'", "")),
"{lb}.png".format(lb=lb)])
os.remove(lb+".data")
os.remove(toNewmanFn(lb))
call(["open",
"{lb}.png".format(lb=lb)])
def plot_ts_q(ts_, d, lb="vals", bounds=(-0.03, 0.05), txt="", interactive=False, size=100, cm=3):
from copy import deepcopy
ts = deepcopy(ts_)
def toNewmanFn(fn):
(fn, ext) = os.path.splitext(fn)
return fn + "000" + ".tif"
def ind(ts, g):
geneNms = list(ts)[0].geneNms
return geneNms.index(g)
confFile = "/Users/s1437009/Organism/tools/plot/bin/newmanInit.conf"
visCmd = "/Users/s1437009/Organism/tools/plot/bin/newman"
convertCmd = "convert"
lbGene = "ANT"
for c in ts:
if c.cid in d:
c.exprs[lbGene] = d[c.cid]
cellsToDat(lb + ".data", list(ts))
call([visCmd,
"-shape", "sphereVolume",
"-d", "3",
lb + ".data",
"-column", str(ind(ts, lbGene) + 1),
"-schema", str(cm),
"-output", "tiff",
lb,
"-min", str(bounds[0]),
"-max", str(bounds[1]),
"-size", str(size),
"-camera", confFile])
if lb != "":
call([convertCmd,
toNewmanFn(lb),
"-fill", "white",
"-font", "Times-New-Roman",
"-pointsize", str(15),
"-undercolor", "#696969",
"-gravity", "North",
"-annotate", "+0+0",
" {txt} ".format(txt=txt),
"{lb}.png".format(lb=lb)])
else:
call([convertCmd,
toNewmanFn(lb),
"{lb}.png".format(lb=lb)])
if interactive:
call(["open",
"{lb}.png".format(lb=lb)])
os.remove(lb+".data")
os.remove(toNewmanFn(lb))
return "{lb}.png".format(lb=lb)
def montage_fimgs(fns, im_label="montage"):
montageCmd = "montage"
n = len(fns)
m = np.ceil(n / 3)
k = min(n, 3)
#collage all the images
call([montageCmd] +
fns +
["-tile",
str(k) + "x" + str(m),
"-geometry", "+20+20",
im_label + ".png"])
def mark_state_gr(ts, grs_state):
st_genes = f.states
mgrs = dict([(st, np.mean(grs)) for st, grs in grs_state.items()])
d = dict()
for c in ts:
d[c.cid] = mgrs.get(st_genes.get(c.getOnGenes(), None), 0.0)
return d
def plot_state_mgrs(t):
tss, linss = lin.mkSeries()
lin.filterL1_st(tss)
ts = tss[t]
grs_state = get_grs_state()
d = mark_state_gr(ts, grs_state)
plot_ts_q(ts, d, "grates_sts_{t}h".format(t=t))
def get_st_cids_expr(ts, e, sts: List[int]):
sts_envs = f.statesI_env(seg.geneNms)
sts_genes = f.statesI()
e = getTopExpr(e)
sts_t = [st for st in sts if seg.evalB(e, sts_envs[st])]
cids_t = set(reduce(add, [ts.filterGs(sts_genes[st]) for st in sts_t]))
return cids_t
def get_sts_expr(ts, e, sts: List[int]) -> List[int]:
sts_envs = f.statesI_env(seg.geneNms)
sts_genes = f.statesI()
e = getTopExpr(e)
sts_t = [st for st in sts if seg.evalB(e, sts_envs[st])]
return sts_t
def showR(r):
e, gr = r
e = e.replace("'", "")
return "{e}, {gr:.2f}".format(e=e, gr=gr)
def getGenesOp(e):
if type(e.op) is ast.And:
return reduce(add, [getGenes(e1) for e1 in e.values])
elif type(e.op) is ast.Or:
return reduce(add, [getGenes(e1) for e1 in e.values])
elif type(e.op) is ast.Not:
return ["not {gn}".format(gn=reduce(add, getGenes(e.operand)))]
def getGenes(e):
if type(e) is ast.UnaryOp or type(e) is ast.BoolOp:
return getGenesOp(e)
elif type(e) is ast.Str:
return [e.s]
elif type(e) is ast.Name:
return [e.id]
def getTopExpr(e):
return e.body[0].value
def expr(r):
return r[0]
def val(r):
return r[1]
def getResPerGene(ress):
ress_gene = defaultdict(list)
for expr, res in ress.items():
for gn in getGenes(getTopExpr(expr)):
ress_gene[gn].append(res)
return ress_gene
def pprint_list(ress):
import astor
ress_ = sorted([(astor.to_source(k).replace('"', '').strip(), v)
for k, v in ress.items()],
key=lambda x: x[1],
reverse=True)
return ress_
def getLinGBExpr(tss, e):
return {t: ts.filterGBExpr(e) for t, ts in tss.items()}
def getValsT(cidsT, valsT, tpoints=set([10, 40, 96, 120, 132])):
return {t:edict.gets(valsT[t], cids) for t, cids in cidsT.items()
if t in tpoints}
def gratio(xs, xs1):
if not xs or not xs1:
return np.nan
m1 = np.mean(xs)
m2 = np.mean(xs1)
return (m1 - m2) / (m1 + m2)
def fgr(tss, grates, g1, g2):
bexpr1 = "'{g1}' and not '{g2}'".format(g1=g1, g2=g2)
bexpr2 = "'{g1}' and '{g2}'".format(g1=g1, g2=g2)
cidsT = getLinGBExpr(tss, seg.ge(bexpr2))
cidsT1 = getLinGBExpr(tss, seg.ge(bexpr1))
grs = getValsT(cidsT, grates)
grs1 = getValsT(cidsT1, grates)
return {t:gratio(grs[t], grs1[t])
for t in grs.keys()}
def get_vals_exprs(tss, e1, e2, vals):
cidsT = getLinGBExpr(tss, seg.ge(e1))
cidsT1 = getLinGBExpr(tss, seg.ge(e2))
grs = getValsT(cidsT, vals)
grs1 = getValsT(cidsT1, vals)
return grs, grs1
def rgd_gene(tss, g, grates):
bexpr1 = "'{g1}'".format(g1=g)
bexpr2 = "not '{g1}'".format(g1=g)
grs, grs1 = get_vals_exprs(tss, bexpr1, bexpr2, grates)
return {t:gratio(grs[t], grs1[t])
for t in grs.keys()}
def rgd_gene_(tss, g, grates):
bexpr1 = "'{g1}'".format(g1=g)
bexpr2 = "not '{g1}'".format(g1=g)
grs_t, grs1_t = get_vals_exprs(tss, bexpr1, bexpr2, grates)
return gratio(reduce(add, grs_t.values()),
reduce(add, grs1_t.values()))
def rgd_state(st, grs_state):
grs_ = reduce(add, [grs for st_id, grs in grs_state.items()
if st_id != st])
gr = grs_state[st]
return gratio(gr, grs_)
def pval_state(st, grs_state):
grs_ = reduce(add, [grs for st_id, grs in grs_state.items()
if st_id != st])
gr = grs_state[st]
_, pval = ttest_ind(grs_, gr)
return pval
def pvals_all_states(grs_state):
return {st_id:pval_state(st_id, grs_state)
for st_id in grs_state.keys()}
def rgd_all_states(grs_state):
return {st_id:rgd_state(st_id, grs_state)
for st_id in grs_state.keys()}
def go_single(tss, geneNms):
d = {10: dict(),
40: dict(),
96: dict(),
120: dict(),
132: dict()}
tss, linss = lin.mkSeries()
lin.filterL1_st(tss)
grates = grs.grates_avg_cons(tss, linss)
for g in geneNms:
v = rgd_gene(tss, g, grates)
for t, gr in v.items():
d[t][g] = [gr]
return d
def go_single_(tss, geneNms):
d = dict()
tss, linss = lin.mkSeries()
lin.filterL1_st(tss)
grates = grs.grates_avg_cons(tss, linss)
for g in geneNms:
v = rgd_gene_(tss, g, grates)
d[g] = [v]
return d
def calcTs(tss, grates, gs, f):
d = {10: dict(),
40: dict(),
96: dict(),
120: dict(),
132: dict()}
for g1, g2 in product(gs, gs):
print(g1, g2)
v = f(tss, grates, g1, g2)
for t, gratio in v.items():
d[t][(g1, g2)] = gratio
return d
def matrixify(k2_dict):
from itertools import product
kss = k2_dict.keys()
kss1 = sorted(list(set([ks[0] for ks in kss])))
kss2 = sorted(list(set([ks[1] for ks in kss])))
feat_mat = np.zeros((len(kss1), len(kss2)))
for (i, k1), (j, k2) in product(list(enumerate(kss1)),
list(enumerate(kss2))):
feat_mat[i, j] = k2_dict[(k1, k2)]
return kss1, kss2, feat_mat
def matrixify_df(k2_dict, kss, df=""):
from itertools import product
kss1 = sorted(kss)
kss2 = sorted(kss)
feat_mat = np.empty((len(kss1), len(kss2)), dtype=str)
for (i, k1), (j, k2) in product(list(enumerate(kss1)),
list(enumerate(kss2))):
print(i, j, k1, k2)
feat_mat[i, j] = k2_dict.get((k1, k2), df)
return kss1, kss2, feat_mat
def arrange_rows_cols(vals, gs):
vals_ = dict()
for i, g in enumerate(gs):
vals_[g] = list(vals[:, i])
return vals_
def mkStripPlotCombs(vals_, ax, cl, lb="", annot=True):
set_plot_params()
plt.rcParams['svg.fonttype'] = 'none'
d = vals_
from itertools import repeat
from functools import reduce
from operator import add
xs_labs = sorted(d.keys())
ax.yaxis.set_major_locator(ticker.MultipleLocator(0.4))
xs = reduce(add, [list(repeat(x, len(d[x])))
for i, x in enumerate(xs_labs)])
hs = reduce(add, [list(repeat("pos", len(d[x])))
for i, x in enumerate(xs_labs)])
ys = reduce(add, [d[x] for x in xs_labs])
cls = sns.color_palette("Blues")
sns.stripplot(xs, ys, palette=[cls[cl]], size=5, label=lb)
ax.set_xticks(list(range(len(xs_labs))))
if annot:
ax.text(21.3, -0.383, "ETTIN, STM", alpha=0.5, weight='ultralight')
ax.text(12.2, 0.36, "SEP1, LFY", alpha=0.5, weight='ultralight')
plt.xticks(rotation=90)
def go_combs(tss, linss, geneNms, f):
grates = grs.grates_avg_cons(tss, linss)
d = calcTs(tss, grates, geneNms, f)
res = {}
for t in d.keys():
rr = sorted([(pair, gr) for pair, gr in d[t].items()
if not math.isnan(gr)],
key=lambda x: abs(x[1]),
reverse=True)
rnan = [(pair, gr) for pair, gr in d[t].items() if math.isnan(gr)]
res[t] = rr + rnan
return res