diff --git a/ews/coordinator/processor_scraper.py b/ews/coordinator/processor_scraper.py
deleted file mode 100644
index 41f82439168f3a6e58080e88b2542eec74eb1117..0000000000000000000000000000000000000000
--- a/ews/coordinator/processor_scraper.py
+++ /dev/null
@@ -1,468 +0,0 @@
-#ProcessorScraper.py
-'''Functions to process the media scraper reports available from Asif Al
-Faisal's dashboard component.
-
-Downloads a csv file of news reports and reformats them as survey records to
-provide to the wheat rust early warning system.
-
-The format and content of the csv of news reports is based on ARRCC work by
-Asif Al Faisal (CIMMYT-Bangladesh).'''
-
-import datetime
-import json
-import os
-from pathlib import Path
-import requests
-import smtplib
-import ssl
-import subprocess
-
-import certifi
-from numpy import where
-from pandas import concat, DataFrame, read_csv, Series, set_option
-
-from processor_base import ProcessorBase
-# gitlab projects
-# TODO: Package these projects so they are robust for importing
-
-from flagdir import jobStatus # created by jws52
-
-
-class ProcessorScraper(ProcessorBase):
-
-    """ LIFECYCLE FUNCTIONS INHERITED FROM PROCESSOR.PY """
-
-    def process_pre_job(self, args):
-        return True
-
-    def process_in_job(self, jobPath, status, configjson, component) -> object:
-        return self.process_in_job_media_scraper(jobPath, status, configjson, component)
-
-    def process_post_job(self, jobPath, configjson):
-        pass
-
-    def __init__(self) -> None:
-        super().__init__()
-
-
-    """ LIFECYCLE FUNCTIONS INHERITED FROM PROCESSOR.PY """
-
-    # date format conforms to format used in SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv
-    # # ODK v1.11.2:
-    # FMT = '%d-%b-%Y'
-    # FMT_SHORT = '%d-%b-%Y'
-    # ODK v1.18.0:
-    FMT = '%b %d, %Y %H:%m:%S %p'
-    FMT_SHORT = '%b %d, %Y'
-
-    # url location of latest news report search
-    URL_DEFAULT = 'http://arrcc-viewer.herokuapp.com/assets/sample_data/data.zip'
-
-    def get_news_reports_from_url(self, job_dir: str, url = URL_DEFAULT) -> None:
-        '''Downloads the news report data available on the ARRCC media report
-        dashboard, into the provided directory.
-
-        Does not return anything'''
-
-        assert os.path.exists(job_dir)
-
-        # Get the zip file from the url and immediately write a local copy
-        fn_zip = f"{job_dir}/data.zip"
-        with open(fn_zip,'wb') as zipfile:
-            zipfile.write(requests.get(url).content)
-
-        # unzip it
-        dir_unzip = f"{job_dir}/data/"
-        Path(dir_unzip).mkdir(parents=True, exist_ok=False)
-        cmd_unzip = ['unzip',fn_zip,'-d',dir_unzip]
-        subprocess.run(cmd_unzip)
-
-        return
-
-    def read_news_reports(self, job_dir: str) -> DataFrame:
-        '''Opens the news reports in the provided directory.
-
-        Returns a pandas dataframe.'''
-
-        fn = f"{job_dir}/data/NEWS REPORTS.csv"
-
-        dateparse = lambda x: datetime.datetime.strptime(x, '%d-%m-%y')
-
-        df = read_csv(
-                fn,
-                index_col=0,
-                header=0,
-                parse_dates=['Date'],
-                date_parser=dateparse)
-
-        return df
-
-    def estimate_rust(
-        self,
-        description: Series,
-        disease: str,
-        return_type: str) -> Series:
-        '''Works with pandas series'''
-
-        # check for alternative naming
-        if disease in ['yellow','stripe']:
-
-            any_disease = description.str.contains('yellow') | description.str.contains('stripe')
-
-        else:
-            any_disease = description.str.contains(disease)
-
-        return_dict = {
-                'incidence':'medium',
-                'severity':'30'
-                }
-
-        prevalence = where(any_disease,return_dict[return_type],'na')
-
-        return prevalence
-
-    def guess_stage(
-            self,
-            date: Series,
-            country: Series) -> Series:
-
-        #TODO: provide typical phenology dates per country
-
-        # all of the country
-        # based on Moin's estimates from vegetative to ripening & maturing
-        # note his Start Date and End Dates are always 30 days apart
-        # so, this is sticking to the middle of the range
-        stage_start_dates_bangladesh = {
-                'tillering':'5 Dec', # ~26  days { combined 30 days to complete
-                'boot'     :'31 Dec', # ~4 days {
-                'heading'  :'4 Jan', # 20 days
-                'flowering':'24 Jan', # 10 days
-                'milk'     :'3 Feb', # 10 days
-                'dough'    :'13 Feb', # ~15 days { combined 25 days to complete
-                'maturity' :'28 Mar', # ~10 days {
-                'NA'       :'9 Mar'} # total ~95 days
-
-        # main season wheat in Terai
-        # based on Madan's estimates of min and max duration, taking the mean
-        # from vegetative to ripening & maturing
-        stage_start_dates_nepal_terai = {
-                'tillering':'24 Dec',  # ~ 56 days { combined 66 days to complete
-                'boot'     :'18 Feb',  # ~10 days {
-                'heading'  :'28 Feb',  # 10 days
-                'flowering':'9 Mar',   # 5 days
-                'milk'     :'14 Mar',  # ~12 days { combined 27 days to complete
-                'dough'    :'26 Mar',  # ~15 days {
-                'maturity' :'10 Apr',  # 10 days
-                'NA'       :'20 Apr'} # total ~118 days
-
-        # TODO: Less important: implement main season wheat in mid-hills from Madan's estimates
-        # and determine how to distinguish Terai from mid-hills in news report
-        stage_start_dates_nepal_midhills = {
-                'tillering':'',
-                'boot'     :'',
-                'heading'  :'',
-                'flowering':'',
-                'milk'     :'',
-                'dough'    :'',
-                'maturity' :'',
-                'NA'       :''}
-
-
-        # mainly for the north
-        # assume the same as Nepal Terai as for last year.
-        # TODO: get estimates specific to Pakistan
-        stage_start_dates_pakistan = stage_start_dates_nepal_terai
-
-        # mainly for Haryana district
-        # assume the same as Nepal Terai as for last year.
-        # TODO: get estimates specific to India NW districts
-        stage_start_dates_india = stage_start_dates_nepal_terai
-
-        stage_start_dates_by_country = {
-                'Bangladesh' : stage_start_dates_bangladesh,
-                'Nepal' : stage_start_dates_nepal_terai,
-                'India' : stage_start_dates_india,
-                'Pakistan' : stage_start_dates_pakistan}
-
-        df = DataFrame({'date':date,'country':country})
-        dates_by_entry = country.apply(lambda val: stage_start_dates_by_country[val])
-        df2 = DataFrame.from_records(dates_by_entry.values)
-        df2.index = df.index
-        df3 = concat([df,df2],axis='columns')
-
-        # handle Dec-Jan crossover (is there a neater way of doing this?)
-
-        df3['year'] = df3['date'].apply(lambda di: di.year)
-        df3['lastyear'] = df3['date'].apply(lambda di: di.year-1)
-
-        stages_thisyear = {coln:df3.apply(lambda row: datetime.datetime.strptime(f"{row[coln]} {row['year']}",'%d %b %Y'),axis='columns') for coln in stage_start_dates_bangladesh.keys()}
-        stages_lastyear = {coln:df3.apply(lambda row: datetime.datetime.strptime(f"{row[coln]} {row['lastyear']}",'%d %b %Y'),axis='columns') for coln in stage_start_dates_bangladesh.keys()}
-        df3_thisyear = DataFrame.from_records(stages_thisyear)
-        df3_lastyear = DataFrame.from_records(stages_lastyear)
-
-        # Use knowledge of order of phenological stages to determine which dates are from last year
-        stage_order = ['tillering','boot','heading','flowering','milk','dough','maturity','NA']
-
-        df4 = df3_thisyear[stage_order]
-
-        # check each stage in turn
-        for i,stage in enumerate(stage_order[:-1]):
-            stage_ip1 = stage_order[i+1]
-            # if the earlier stage has a later date, use last year's dates
-            df4[stage] = where(df4[stage]<df4[stage_ip1],df4[stage],df3_lastyear[stage])
-
-        # find out which stages start earlier than the survey date
-        date_compare = df4.le(date,axis='rows')
-
-        # get name of latest valid stage
-        stage_series = date_compare.apply(lambda row: row.iloc[::-1].idxmax(),axis='columns')
-
-        return stage_series
-
-    def reformat_news_reports(self, df_in: DataFrame) -> DataFrame:
-        '''Reformats a dataframe of news reports to match BGRI wheat rust survey
-        data entries (making assumptions where necessary). First checks input is as
-        expected.'''
-
-        #Check contents are as expected
-        cols = df_in.columns
-        expected_cols = ['Lon','Lat','Date','Type','Link','Country','State','District']
-
-        for expected_col in expected_cols:
-            assert expected_col in cols
-
-        # re-order dataframe, with newest entry last
-        df = df_in.copy()
-        df.sort_values('Date',ascending=True,inplace=True)
-
-        assumption_dict = {
-            'field_area' : 1}
-
-        output_dict = {
-            'SubmissionDate' : df['Date'],
-            'start' : df['Date'],
-            'end' : df['Date'],
-            'today' : df['Date'],
-            'deviceid' : 999,
-            'subscriberid' : 999,
-            'imei' : 999,
-            'phonenumber' : 999,
-            'username' : 999,
-            'country_list' : df['Country'],
-            'blast_rust' : 'Rust',
-            'surveyor_name' : 'News report',
-            'institution' : 'na',
-            'mobile_num' : 999,
-            'site_information-survey_site' : 'Farmer field',
-            'site_information-crop' : 'NA',
-            'site_information-field_area' : assumption_dict['field_area'],
-            'site_information-unit_m2' : 999,
-            'site_information-field_size' : 999,
-            'site_information-variety' : 'NA',
-            'site_information-growth_stage' : self.guess_stage(df['Date'],df['Country']),
-            'survey_infromation-location_name' : 999,
-            'survey_infromation-location_blast' : 999,
-            'survey_infromation-sampColor' : 999,
-            'survey_infromation-dateRange' : 999,
-            'survey_infromation-fieldNumber' : 999,
-            'survey_infromation-diseaseIncidencePercentage' : 999,
-            'survey_infromation-severityPercentage' : 999,
-            'survey_infromation-survey_date' : df['Date'].apply(lambda cell: cell.strftime(self.FMT_SHORT)),
-            'survey_infromation-site_name' : '"'+df['District'].astype(str)+', '+df['State'].astype(str)+', '+df['Country'].astype(str)+'"',
-            'survey_infromation-location-Latitude' : df['Lat'],
-            'survey_infromation-location-Longitude' : df['Lon'],
-            'survey_infromation-location-Altitude' : -999,
-            'survey_infromation-location-Accuracy' : -999,
-            'stem_rust-stemrust_incidence' : self.estimate_rust(df['Type'],'stem','incidence'),
-            'stem_rust-Stemrust_severity' : self.estimate_rust(df['Type'],'stem','severity'),
-            'stem_rust-stemrust_host_plant_reaction' : 'na',
-            'leaf_rust-leafrust_incidence' : self.estimate_rust(df['Type'],'leaf','incidence'),
-            'leaf_rust-leafrust_severity' : self.estimate_rust(df['Type'],'leaf','severity'),
-            'leaf_rust-leafrust_host_plant_reaction' : 'na',
-            'yellow_rust-yellowrust_incidence' : self.estimate_rust(df['Type'],'yellow','incidence'),
-            'yellow_rust-yellowrust_severity' : self.estimate_rust(df['Type'],'yellow','severity'),
-            'yellow_rust-yellowrust_host_plant_reaction' : 'na',
-            'septoria-septoria_incidence' : 'na',
-            'septoria-septoria_severity' : 'na',
-            'other_diseases_group-other_diseases' : -999,
-            'score_diseases_count' : -999,
-            'SET-OF-score_diseases' : -999,
-            'samples_collected' : -999,
-            'samples_type' : -999,
-            'sample_size-number_stemrust_live' : -999,
-            'sample_size-number_stemrust_dead_dna' : -999,
-            'sample_size-number_yellowrust_live' : -999,
-            'sample_size-number_yellowrust_dead' : -999,
-            'sample_size-number_leafrust_live' : -999,
-            'sample_size-using_barcode' : -999,
-            'live_stemrust_samples_count' : -999,
-            'SET-OF-live_stemrust_samples' : -999,
-            'dead_stemrust_samples_count' : -999,
-            'SET-OF-dead_stemrust_samples' : -999,
-            'live_yellowrust_samples_count' : -999,
-            'SET-OF-live_yellowrust_samples' : -999,
-            'dead_yellowrust_samples_count' : -999,
-            'SET-OF-dead_yellowrust_samples' : -999,
-            'live_leafrust_samples_count' : -999,
-            'SET-OF-live_leafrust_samples' : -999,
-            'comment' : df['Link'],
-            'meta-instanceID' : -999,
-            'meta-instanceName' : -999,
-            'KEY' : -999}
-
-        df_out = DataFrame(output_dict)
-
-        return df_out
-
-    EMAIL_MSG = """Subject: ARRCC latest scraped media reports
-    
-    Here is an update of what is on the ARRCC media scraper platform.
-    
-    The latest entry is below. The full set for this season, auto-formatted for input to NAME source calcs in a basic way, is available at:
-    {0}
-    
-    Check all new webpages for validity and extra info (e.g. field area, variety), then edit and copy any relevant entries to:
-    /storage/app/EWS_prod/regions/SouthAsia/resources/coordinator/assets/SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv
-    
-    Then, check that the survey data processor succeeds with these new entries.
-    
-    Thanks, Jake
-    
-    {1}
-    """
-
-    def send_email(
-            self,
-            output_fn: str,
-            data_str: str,
-            email_credential_fn: str,
-            ) -> None:
-
-
-        msg = self.EMAIL_MSG.format(output_fn,data_str)
-
-        with open(email_credential_fn,'r') as f:
-            gmail_config = json.load(f)
-
-        maintainers = gmail_config['toaddrs']
-
-        # Create a secure SSL context
-        context = ssl.create_default_context(cafile=certifi.where())
-
-        # It is indicated that gmail requires port 465 for SMTP_SSL, otherwise port
-        # 587 with .starttls() from
-        # https://realpython.com/python-send-email/#sending-a-plain-text-email I
-        # think port 587 is meant to make sense for the typical python logging
-        # smtphandler but that doesn't apply here
-        port = 465 # gmail_config['port']
-
-        with smtplib.SMTP_SSL(gmail_config['host'], port, context=context) as server:
-
-            server.login(gmail_config['user'], gmail_config['pass'])
-
-            server.sendmail(gmail_config['user'], maintainers, msg)
-
-            self.logger.info('Message sent!')
-
-        return
-
-    def process_in_job_media_scraper(
-            self,
-            jobPath: str,
-            status: jobStatus,
-            config: dict,
-            component: str = 'Scraper'
-            ) -> None:
-        """
-        1) Get a latest copy of the news report data from dashboard URL.
-        2) TODO: Reformat to match BGRI wheat rust survey data entries .
-        3) Filter to latest news reports.
-        4) Output to csv.
-        5) email any new reports to maintainers, so they can copy into
-           SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv where appropriate.
-        """
-
-        config_scraper = config['Scraper'].copy()
-
-        dateString = config['StartString']
-
-        self.logger.info("1) Getting a latest copy of the news report data from dashboard URL")
-
-        url = config['Scraper']['URL']
-
-        self.get_news_reports_from_url(jobPath,url)
-
-        reports_in = self.read_news_reports(jobPath)
-
-        # TODO: Reformat
-        self.logger.info("2) Reformat to match BGRI wheat rust survey data entries")
-
-        # (making assumptions where necessary)
-        reports = self.reformat_news_reports(reports_in)
-
-        self.logger.info("3) Filter to latest news reports")
-
-        this_season_starts_str = config['Scraper']['seasonStartString'] # '20201201'
-        this_season_starts = datetime.datetime.strptime(this_season_starts_str,'%Y%m%d')
-
-        latest_reports = reports[reports['SubmissionDate']>=this_season_starts]
-
-        # TODO: Low priority: Determine differences from last reformatted set of news reports
-
-        self.logger.info("4) Output to csv")
-
-        output_fn = f"{jobPath}/latest_reports_as_proxy_surveys.csv"
-
-        # date format conforms to format used in SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv
-        latest_reports.to_csv(
-                output_fn,
-                index=False,
-                date_format=self.FMT)
-
-        is_sending_email = config['Scraper'].get('SendEmail',True)
-
-        if is_sending_email == True:
-
-            self.logger.info("5) email any new reports to maintainers, so they can copy into")
-            self.logger.info("SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv where appropriate")
-
-            selected_columns = [
-                    'SubmissionDate',
-                    'site_information-field_area',
-                    'site_information-growth_stage',
-                    'survey_infromation-site_name',
-                    'country_list',
-                    'stem_rust-stemrust_incidence',
-                    'stem_rust-Stemrust_severity',
-                    'yellow_rust-yellowrust_incidence',
-                    'yellow_rust-yellowrust_severity',
-                    'leaf_rust-leafrust_incidence',
-                    'leaf_rust-leafrust_severity',
-                    'comment']
-
-            # remove pandas display limitation, so full web address is shown from comment
-            set_option('display.max_colwidth', None)
-            latest_report_selection = latest_reports.iloc[-1,:].loc[selected_columns].__str__()
-
-            # get the email credentials file path from the environment variables
-            assert 'EMAIL_CRED' in os.environ
-            email_credential_fn = os.environ['EMAIL_CRED']
-            assert os.path.exists(email_credential_fn)
-
-            self.send_email(
-                    output_fn,
-                    latest_report_selection,
-                    email_credential_fn = email_credential_fn)
-
-        proc_out = {}
-        # Output files available for upload
-        proc_out['output'] = None
-        # Processing files available for clearing
-        proc_out['clearup'] = None
-
-        return proc_out
-
-
-if __name__ == '__main__':
-    processor = ProcessorScraper()
-    processor.run_processor("Scraper", "SCRAPER")