diff --git a/GatherScrapedMediaReports.py b/GatherScrapedMediaReports.py
new file mode 100644
index 0000000000000000000000000000000000000000..ff90c1e867fe0448e75b41bc1105d1a498811c30
--- /dev/null
+++ b/GatherScrapedMediaReports.py
@@ -0,0 +1,388 @@
+#GatherScraedMediaReports.py
+'''Downloads a csv file of news reports and reformats them as survey records to
+provide to the wheat rust early warning system.
+
+The format and content of the csv of news reports is based on ARRCC work by
+Asif Al Faisal (CIMMYT-Bangladesh).'''
+
+import os
+import json
+import requests
+import subprocess
+from pathlib import Path
+import datetime
+
+from numpy import where
+import pandas as pd
+from pandas import read_csv, DataFrame
+
+#maintainers = ['jws52@cam.ac.uk','tm689@cam.ac.uk','rs481@cam.ac.uk']
+maintainers = ['jws52@cam.ac.uk']
+
+# date format conforms to format used in SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv
+# # ODK v1.11.2:
+# fmt = '%d-%b-%Y'
+# fmt_short = '%d-%b-%Y'
+# ODK v1.18.0: 
+fmt = '%b %d, %Y %H:%m:%S %p'
+fmt_short = '%b %d, %Y'
+
+
+def get_news_reports(job_dir):
+    '''Downloads the news report data available on the ARRCC media report 
+    dashboard, into the provided directory.
+    
+    Does not return anything'''
+
+    assert os.path.exists(job_dir)
+
+    # url location of latest news report search
+    url = 'http://arrcc-viewer.herokuapp.com/assets/sample_data/data.zip' 
+
+    r = requests.get(url)
+
+    #r.content
+
+    # write a local copy of the zip file
+    fn_zip = f"{job_dir}data.zip"
+    with open(fn_zip,'wb') as zipfile:
+        zipfile.write(r.content)
+
+    # unzip it
+    dir_unzip = f"{job_dir}/data/"
+    cmd_unzip = ['unzip',fn_zip,'-d',dir_unzip]
+    subprocess.run(cmd_unzip)
+
+    return
+
+def read_news_reports(job_dir):
+    '''Opens the news reports in the provided directory.
+    
+    Returns a pandas dataframe.'''
+
+    fn = f"{job_dir}/data/NEWS REPORTS.csv"
+
+    df = read_csv(fn,index_col=0,header=0,parse_dates=['Date'])
+
+    return df
+
+def reformat_news_reports(df):
+    '''Reformats a dataframe of news reports to match BGRI wheat rust survey 
+    data entries (making assumptions where necessary). First checks input is as
+    expected.'''
+
+    #Check contents are as expected
+    cols = df.columns
+    expected_cols = ['Lon','Lat','Date','Type','Link','Country','State','District']
+
+    for expected_col in expected_cols:
+        assert expected_col in cols
+
+    assumption_dict = {
+        'field_area' : 1}
+
+    def guess_stage(date,country):
+
+        #TODO: provide typical phenology dates per country
+
+        # all of the country
+        # based on Moin's estimates from vegetative to ripening & maturing
+        # note his Start Date and End Dates are always 30 days apart
+        # so, this is sticking to the middle of the range
+        stage_start_dates_bangladesh = {
+                'tillering':'5 Dec', # ~26  days { combined 30 days to complete
+                'boot'     :'31 Dec', # ~4 days {
+                'heading'  :'4 Jan', # 20 days
+                'flowering':'24 Jan', # 10 days
+                'milk'     :'3 Feb', # 10 days 
+                'dough'    :'13 Feb', # ~15 days { combined 25 days to complete
+                'maturity' :'28 Mar', # ~10 days {
+                'NA'       :'9 Mar'} # total ~95 days
+        
+        # main season wheat in Terai
+        # based on Madan's estimates of min and max duration, taking the mean
+        # from vegetative to ripening & maturing
+        stage_start_dates_nepal_terai = {
+                'tillering':'24 Dec',  # ~ 56 days { combined 66 days to complete
+                'boot'     :'18 Feb',  # ~10 days {
+                'heading'  :'28 Feb',  # 10 days
+                'flowering':'9 Mar',   # 5 days
+                'milk'     :'14 Mar',  # ~12 days { combined 27 days to complete
+                'dough'    :'26 Mar',  # ~15 days {
+                'maturity' :'10 Apr',  # 10 days
+                'NA'       :'20 Apr'} # total ~118 days
+
+        # TODO: Less important: implement main season wheat in mid-hills from Madan's estimates
+        # and determine how to distinguish Terai from mid-hills in news report
+        stage_start_dates_nepal_midhills = {
+                'tillering':'',
+                'boot'     :'',
+                'heading'  :'',
+                'flowering':'',
+                'milk'     :'',
+                'dough'    :'',
+                'maturity' :'',
+                'NA'       :''}
+
+
+        # mainly for the north
+        # assume the same as Nepal Terai as for last year.
+        # TODO: get estimates specific to Pakistan
+        stage_start_dates_pakistan = stage_start_dates_nepal_terai
+
+        # mainly for Haryana district
+        # assume the same as Nepal Terai as for last year.
+        # TODO: get estimates specific to India NW districts
+        stage_start_dates_india = stage_start_dates_nepal_terai
+
+        stage_start_dates_by_country = {
+                'Bangladesh' : stage_start_dates_bangladesh,
+                'Nepal' : stage_start_dates_nepal_terai,
+                'India' : stage_start_dates_india,
+                'Pakistan' : stage_start_dates_pakistan}
+        
+        df = DataFrame({'date':date,'country':country})
+        dates_by_entry = country.apply(lambda val: stage_start_dates_by_country[val])
+        df2 = DataFrame.from_records(dates_by_entry.values)
+        df2.index = df.index
+        df3 = pd.concat([df,df2],axis='columns')
+
+        # handle Dec-Jan crossover (is there a neater way of doing this?)
+
+        df3['year'] = df3['date'].apply(lambda di: di.year)
+        df3['lastyear'] = df3['date'].apply(lambda di: di.year-1)
+
+        stages_thisyear = {coln:df3.apply(lambda row: datetime.datetime.strptime(f"{row[coln]} {row['year']}",'%d %b %Y'),axis='columns') for coln in stage_start_dates_bangladesh.keys()}
+        stages_lastyear = {coln:df3.apply(lambda row: datetime.datetime.strptime(f"{row[coln]} {row['lastyear']}",'%d %b %Y'),axis='columns') for coln in stage_start_dates_bangladesh.keys()}
+        df3_thisyear = DataFrame.from_records(stages_thisyear)
+        df3_lastyear = DataFrame.from_records(stages_lastyear)
+        
+        # Use knowledge of order of phenological stages to determine which dates are from last year
+        stage_order = ['tillering','boot','heading','flowering','milk','dough','maturity','NA']
+
+        df4 = df3_thisyear[stage_order]
+
+        # check each stage in turn
+        for i,stage in enumerate(stage_order[:-1]): 
+            stage_ip1 = stage_order[i+1] 
+            # if the earlier stage has a later date, use last year's dates
+            df4[stage] = where(df4[stage]<df4[stage_ip1],df4[stage],df3_lastyear[stage])
+
+        # find out which stages start earlier than the survey date
+        date_compare = df4.le(date,axis='rows')
+        
+        # get name of latest valid stage
+        stage_series = date_compare.apply(lambda row: row.iloc[::-1].idxmax(),axis='columns')
+
+        return stage_series
+
+    def estimate_rust(description: pd.Series,disease: str,return_type: str):
+        '''Works with pandas series'''
+
+
+
+        # check for alternative naming
+        if disease in ['yellow','stripe']:
+            
+            any_disease = description.str.contains('yellow') | description.str.contains('stripe')
+
+        else:
+            any_disease = description.str.contains(disease)
+
+
+        return_dict = {
+                'incidence':'medium',
+                'severity':'30'
+                }
+
+        prevalence = where(any_disease,return_dict[return_type],'na')
+
+        return prevalence
+
+    output_dict = {
+        'SubmissionDate' : df['Date'],
+        'start' : df['Date'],
+        'end' : df['Date'],
+        'today' : df['Date'],
+        'deviceid' : 999,
+        'subscriberid' : 999,
+        'imei' : 999,
+        'phonenumber' : 999,
+        'username' : 999,
+        'country_list' : df['Country'],
+        'blast_rust' : 'Rust',
+        'surveyor_name' : 'News report',
+        'institution' : 'na',
+        'mobile_num' : 999,
+        'site_information-survey_site' : 'Farmer field',
+        'site_information-crop' : 'NA',
+        'site_information-field_area' : assumption_dict['field_area'],
+        'site_information-unit_m2' : 999,
+        'site_information-field_size' : 999,
+        'site_information-variety' : 'NA',
+        'site_information-growth_stage' : guess_stage(df['Date'],df['Country']),
+        'survey_infromation-location_name' : 999,
+        'survey_infromation-location_blast' : 999,
+        'survey_infromation-sampColor' : 999,
+        'survey_infromation-dateRange' : 999,
+        'survey_infromation-fieldNumber' : 999,
+        'survey_infromation-diseaseIncidencePercentage' : 999,
+        'survey_infromation-severityPercentage' : 999,
+        'survey_infromation-survey_date' : df['Date'].apply(lambda cell: cell.strftime(fmt_short)),
+        'survey_infromation-site_name' : '"'+df['District'].astype(str)+', '+df['State'].astype(str)+', '+df['Country'].astype(str)+'"',
+        'survey_infromation-location-Latitude' : df['Lat'],
+        'survey_infromation-location-Longitude' : df['Lon'],
+        'survey_infromation-location-Altitude' : -999,
+        'survey_infromation-location-Accuracy' : -999,
+        'stem_rust-stemrust_incidence' : estimate_rust(df['Type'],'stem','incidence'),
+        'stem_rust-Stemrust_severity' : estimate_rust(df['Type'],'stem','severity'),
+        'stem_rust-stemrust_host_plant_reaction' : 'na',
+        'leaf_rust-leafrust_incidence' : estimate_rust(df['Type'],'leaf','incidence'),
+        'leaf_rust-leafrust_severity' : estimate_rust(df['Type'],'leaf','severity'),
+        'leaf_rust-leafrust_host_plant_reaction' : 'na',
+        'yellow_rust-yellowrust_incidence' : estimate_rust(df['Type'],'yellow','incidence'),
+        'yellow_rust-yellowrust_severity' : estimate_rust(df['Type'],'yellow','severity'),
+        'yellow_rust-yellowrust_host_plant_reaction' : 'na',
+        'septoria-septoria_incidence' : 'na',
+        'septoria-septoria_severity' : 'na',
+        'other_diseases_group-other_diseases' : -999,
+        'score_diseases_count' : -999,
+        'SET-OF-score_diseases' : -999,
+        'samples_collected' : -999,
+        'samples_type' : -999,
+        'sample_size-number_stemrust_live' : -999,
+        'sample_size-number_stemrust_dead_dna' : -999,
+        'sample_size-number_yellowrust_live' : -999,
+        'sample_size-number_yellowrust_dead' : -999,
+        'sample_size-number_leafrust_live' : -999,
+        'sample_size-using_barcode' : -999,
+        'live_stemrust_samples_count' : -999,
+        'SET-OF-live_stemrust_samples' : -999,
+        'dead_stemrust_samples_count' : -999,
+        'SET-OF-dead_stemrust_samples' : -999,
+        'live_yellowrust_samples_count' : -999,
+        'SET-OF-live_yellowrust_samples' : -999,
+        'dead_yellowrust_samples_count' : -999,
+        'SET-OF-dead_yellowrust_samples' : -999,
+        'live_leafrust_samples_count' : -999,
+        'SET-OF-live_leafrust_samples' : -999,
+        'comment' : df['Link'],
+        'meta-instanceID' : -999,
+        'meta-instanceName' : -999,
+        'KEY' : -999}
+
+    df_out = DataFrame(output_dict)
+
+    return df_out
+
+email_msg = """Subject: ARRCC latest scraped media reports
+
+Here is an update of what is on the ARRCC media scraper platform.
+
+The latest entry is below. The full set for this season, auto-formatted for input to NAME source calcs in a basic way, is available at:
+pine:{0}
+
+Check all new webpages for validity and extra info (e.g. field area, variety), then edit and copy any relevant entries to:
+pine:/storage/app/EWS/SouthAsia/Workspace/SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv
+
+Then, check that the survey data processor succeeds with these new entries.
+
+Thanks, Jake
+
+{1}
+"""
+
+def send_email(output_fn,data_str):
+
+    import smtplib, ssl
+
+    msg = email_msg.format(output_fn,data_str)
+
+    with open('/storage/app/EWS/General/EWS-Coordinator/Cred_gmail.json','r') as f: 
+        gmailConfig = json.load(f)
+        
+    # Create a secure SSL context
+    context = ssl.create_default_context()
+
+    # It is indicated that gmail requires port 465 for SMTP_SSL, otherwise port 587 with .starttls()
+    # from https://realpython.com/python-send-email/#sending-a-plain-text-email
+    # I think port 587 is meant to make sense for the typical python logging smtphandler
+    # but that doesn't apply here
+    port = 465 # gmailConfig['port']
+
+    with smtplib.SMTP_SSL(gmailConfig['host'], 465, context=context) as server:
+        server.login(gmailConfig['user'], gmailConfig['pass'])
+        
+        server.sendmail(gmailConfig['user'], maintainers, msg)
+
+        print('Message sent!')
+
+    return
+
+
+if __name__ == '__main__':
+
+    # 0) Prepare directory for this job's files
+
+    #job_dir = 'scrape_job/'
+
+    date_str = datetime.datetime.now().strftime('%Y%m%d_%H%M')
+    #output_dir = '/storage/app/EWS/General/EWS-Coordinator-Dev/scratch_SouthAsia'
+    output_dir = '/storage/app/EWS/SouthAsia/Workspace/'
+    job_dir = f"{output_dir}/REPORTS_{date_str}/"
+    
+    Path(job_dir).mkdir(parents=True, exist_ok=False)
+
+    # 1) Get a latest copy of the news report data
+    get_news_reports(job_dir)
+
+    reports_in = read_news_reports(job_dir)
+
+    # 2) TODO: Reformat to match BGRI wheat rust survey data entries 
+    # (making assumptions where necessary)
+    reports = reformat_news_reports(reports_in)
+
+    # 3) Filter to latest news reports
+    this_season_starts_str = '01 Dec 2020'
+    this_season_starts = datetime.datetime.strptime(this_season_starts_str,'%d %b %Y')
+
+    latest_reports = reports[reports['SubmissionDate']>=this_season_starts]
+
+    # TODO: Low priority: Determine differences from last reformatted set of news reports
+
+    # 4) Output to csv
+    output_fn = f"{job_dir}/latest_reports_as_surveys.csv"
+
+    # date format conforms to format used in SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv
+    latest_reports.to_csv(output_fn,index=False,date_format=fmt)
+    
+    # 5) email any new reports to maintainers, so they can copy into 
+    # SURVEYDATA_MANUAL/LIVE_SURVEYDATA_TOUSE.csv where appropriate
+    selected_columns = [
+            'SubmissionDate',
+            'site_information-field_area',
+            'site_information-growth_stage',
+            'survey_infromation-site_name',
+            'country_list',
+            'stem_rust-stemrust_incidence',
+            'stem_rust-Stemrust_severity',
+            'yellow_rust-yellowrust_incidence',
+            'yellow_rust-yellowrust_severity',
+            'leaf_rust-leafrust_incidence',
+            'leaf_rust-leafrust_severity',
+            'comment']
+    
+    # remove pandas display limitation, so full web address is shown from comment
+    pd.set_option('display.max_colwidth', None)
+    latest_report_selection = latest_reports.iloc[-1,:].loc[selected_columns].__str__()
+    
+    send_email(output_fn,latest_report_selection)
+
+
+
+
+
+
+
+
+
diff --git a/crontab.txt b/crontab.txt
index a64bc2a1c57326f3dda882c3e4f04223504ec99d..97fc148f54767f8a2ec9efbbe1a0ba3c647a032f 100644
--- a/crontab.txt
+++ b/crontab.txt
@@ -35,3 +35,6 @@
 
 # Environmental suitability analysis (Wednesday only)
 00 18,20,22 * * 3 /storage/app/EWS/General/EWS-Coordinator/run_Processor.sh -p Environment -c /storage/app/EWS/General/EWS-Coordinator/config_SouthAsia_an.json --islive
+
+# check for scraped media reports (Monday only)
+00 12 * * 1 /storage/app/EWS/General/EWS-Coordinator/run_GatherScrapedMediaReports.sh
\ No newline at end of file
diff --git a/run_GatherScrapedMediaReports.sh b/run_GatherScrapedMediaReports.sh
new file mode 100755
index 0000000000000000000000000000000000000000..82421b76f7c973f4ad28b7c60c6425ae6ca8d546
--- /dev/null
+++ b/run_GatherScrapedMediaReports.sh
@@ -0,0 +1,10 @@
+#!/bin/bash
+
+# activate conda environment of python modules so they can be imported
+source /storage/app/miniconda3/bin/activate /storage/app/EWS/General/EWS-python/py3EWSepi
+
+python /storage/app/EWS/General/EWS-Coordinator/GatherScrapedMediaReports.py "$@"
+
+# deactivate conda environment
+source /storage/app/miniconda3/bin/deactivate /storage/app/EWS/General/EWS-python/py3EWSepi
+