diff --git a/solventmapcreator/test/clusteringanalysistest/clustercalculationtest.py b/solventmapcreator/test/clusteringanalysistest/clustercalculationtest.py
index 182541cd855925b011fbae9143fdb805f63bf81b..e0e13efafb8179111ac63ee779bd62fd9b00a81e 100644
--- a/solventmapcreator/test/clusteringanalysistest/clustercalculationtest.py
+++ b/solventmapcreator/test/clusteringanalysistest/clustercalculationtest.py
@@ -31,78 +31,78 @@ class ClusterCalculationTestCase(unittest.TestCase):
         """Test to see if expected clustering matrix is produced for
         Ward linkages.
         """
-        expected_linkage_matrix = np.array([[0., 1., 17.      ,   2.      ],
-                                            [  4.      ,   5.      ,  23.459184,   3.      ],
-                                            [  2.      ,   3.      ,  28.      ,   2.      ],
-                                            [  6.      ,   7.      ,  43.875582,   5.      ]])
+        expected_linkage_matrix = np.array([[0., 1., 17., 2.],
+                                            [4., 5., 23.459184, 3.],
+                                            [2., 3., 28., 2.],
+                                            [6., 7., 43.875582, 5.]])
         actual_matrix = clustercalculation.ward_clustering(self.example_distance_matrix)
         np.testing.assert_array_almost_equal(expected_linkage_matrix, actual_matrix)
     def test_wpgmc_clustering(self):
         """Test to see if expected clustering matrix is produced for
         WPGMC linkages.
         """
-        expected_linkage_matrix = np.array([[  0.      ,   1.      ,  17.      ,   2.      ],
-                                            [4.      ,   5.      ,  20.31625 ,   3.      ],
-                                            [  2.      ,   3.      ,  28.      ,   2.      ],
-                                            [  6.      ,   7.      ,  30.650245,   5.      ]])
+        expected_linkage_matrix = np.array([[0., 1., 17., 2.],
+                                            [4., 5., 20.31625, 3.],
+                                            [2., 3., 28., 2.],
+                                            [6., 7., 30.650245, 5.]])
         actual_matrix = clustercalculation.wpgmc_clustering(self.example_distance_matrix)
         np.testing.assert_array_almost_equal(expected_linkage_matrix, actual_matrix)
     def test_upgmc_clustering(self):
         """Test to see if expected clustering matrix is produced for
         UPGMC linkages.
         """
-        expected_linkage_matrix = np.array([[  0.      ,   1.      ,  17.      ,   2.      ],
-                                            [  4.      ,   5.      ,  20.31625 ,   3.      ],
-                                            [  2.      ,   3.      ,  28.      ,   2.      ],
-                                            [  6.      ,   7.      ,  28.321566,   5.      ]])
+        expected_linkage_matrix = np.array([[0., 1., 17., 2.],
+                                            [4., 5., 20.31625, 3.],
+                                            [2., 3., 28., 2.],
+                                            [6., 7., 28.321566, 5.]])
         actual_matrix = clustercalculation.upgmc_clustering(self.example_distance_matrix)
         np.testing.assert_array_almost_equal(expected_linkage_matrix, actual_matrix)
     def test_wpgma_clustering(self):
         """Test to see if expected clustering matrix is produced for
         average/UPGMA linkages.
         """
-        expected_linkage_matrix = np.array([[  0.,   1.,  17.,   2.],
-                                            [  4.,   5.,  22.,   3.],
-                                            [  2.,   3.,  28.,   2.],
-                                            [  6.,   7.,  35.,   5.]])
+        expected_linkage_matrix = np.array([[0., 1., 17., 2.],
+                                            [4., 5., 22., 3.],
+                                            [2., 3., 28., 2.],
+                                            [6., 7., 35., 5.]])
         actual_matrix = clustercalculation.wpgma_clustering(self.example_distance_matrix)
         np.testing.assert_array_almost_equal(expected_linkage_matrix, actual_matrix)
     def test_upgma_clustering(self):
         """Test to see if expected clustering matrix is produced for
         average/UPGMA linkages.
         """
-        expected_linkage_matrix = np.array([[  0.,   1.,  17.,   2.],
-                                            [  4.,   5.,  22.,   3.],
-                                            [  2.,   3.,  28.,   2.],
-                                            [  6.,   7.,  33.,   5.]])
+        expected_linkage_matrix = np.array([[0., 1., 17., 2.],
+                                            [4., 5., 22., 3.],
+                                            [2., 3., 28., 2.],
+                                            [6., 7., 33., 5.]])
         actual_matrix = clustercalculation.upgma_clustering(self.example_distance_matrix)
         np.testing.assert_array_almost_equal(expected_linkage_matrix, actual_matrix)
     def test_max_clustering(self):
         """Test to see if expected clustering matrix is produced for
         maximum linkages.
         """
-        expected_linkage_matrix = np.array([[  0.,   1.,  17.,   2.],
-                                            [  4.,   5.,  23.,   3.],
-                                            [  2.,   3.,  28.,   2.],
-                                            [  6.,   7.,  43.,   5.]])
+        expected_linkage_matrix = np.array([[0., 1., 17., 2.],
+                                            [4., 5., 23., 3.],
+                                            [2., 3., 28., 2.],
+                                            [6., 7., 43., 5.]])
         actual_matrix = clustercalculation.max_clustering(self.example_distance_matrix)
         np.testing.assert_array_almost_equal(expected_linkage_matrix, actual_matrix)
     def test_min_clustering(self):
         """Test to see if expected clustering matrix is produced for
         minimum linkages.
         """
-        expected_linkage_matrix = np.array([[  0.,   1.,  17.,   2.],
-                                            [  2.,   5.,  21.,   3.],
-                                            [  4.,   6.,  21.,   4.],
-                                            [  3.,   7.,  28.,   5.]])
+        expected_linkage_matrix = np.array([[0., 1., 17., 2.],
+                                            [2., 5., 21., 3.],
+                                            [4., 6., 21., 4.],
+                                            [3., 7., 28., 5.]])
         actual_matrix = clustercalculation.min_clustering(self.example_distance_matrix)
         np.testing.assert_array_almost_equal(expected_linkage_matrix, actual_matrix)
     def test_calculate_clustering(self):
         """Test to see if expected clustering matrix is produced.
         """
-        expected_linkage_matrix = np.array([[  0.,   1.,  17.,   2.],
-                                            [  4.,   5.,  22.,   3.],
-                                            [  2.,   3.,  28.,   2.],
-                                            [  6.,   7.,  33.,   5.]])
+        expected_linkage_matrix = np.array([[0., 1., 17., 2.],
+                                            [4., 5., 22., 3.],
+                                            [2., 3., 28., 2.],
+                                            [6., 7., 33., 5.]])
         actual_matrix = clustercalculation.calculate_clustering(self.example_distance_matrix, "average")
         np.testing.assert_array_almost_equal(expected_linkage_matrix, actual_matrix)
\ No newline at end of file