diff --git a/solventmapcreator/clusteringanalysis/clustercalculation.py b/solventmapcreator/clusteringanalysis/clustercalculation.py index c12915c2bb3ffd9d268669365cdb1c3454a71b35..30dc5c06578b786acd185d0d8c41446291f71bd2 100644 --- a/solventmapcreator/clusteringanalysis/clustercalculation.py +++ b/solventmapcreator/clusteringanalysis/clustercalculation.py @@ -13,17 +13,17 @@ logging.basicConfig() LOGGER = logging.getLogger(__name__) LOGGER.setLevel(logging.WARN) -def clustering_by_all_methods(triangular_distance_matrix): +def clustering_by_all_methods(condensed_distance_matrix): """This carries out the clustering using all the clustering methods. A dictionary is returned where the key is the clustering approach used. """ - ward_linkage = ward_clustering(triangular_distance_matrix) - wpgmc_linkage = wpgmc_clustering(triangular_distance_matrix) - upgmc_linkage = upgmc_clustering(triangular_distance_matrix) - wpgma_linkage = wpgma_clustering(triangular_distance_matrix) - upgma_linkage = upgma_clustering(triangular_distance_matrix) - max_linkage = max_clustering(triangular_distance_matrix) - min_linkage = min_clustering(triangular_distance_matrix) + ward_linkage = ward_clustering(condensed_distance_matrix) + wpgmc_linkage = wpgmc_clustering(condensed_distance_matrix) + upgmc_linkage = upgmc_clustering(condensed_distance_matrix) + wpgma_linkage = wpgma_clustering(condensed_distance_matrix) + upgma_linkage = upgma_clustering(condensed_distance_matrix) + max_linkage = max_clustering(condensed_distance_matrix) + min_linkage = min_clustering(condensed_distance_matrix) return {"ward_clustering":ward_linkage, "wpgmc_clustering":wpgmc_linkage, "upgmc_clustering":upgmc_linkage, @@ -32,42 +32,42 @@ def clustering_by_all_methods(triangular_distance_matrix): "max_clustering": max_linkage, "min_clustering":min_linkage} -def ward_clustering(triangular_distance_matrix): +def ward_clustering(condensed_distance_matrix): """This calculates the ward linkage for clustering. """ - return calculate_clustering(triangular_distance_matrix, "ward") + return calculate_clustering(condensed_distance_matrix, "ward") -def wpgmc_clustering(triangular_distance_matrix): +def wpgmc_clustering(condensed_distance_matrix): """This calculates the median/WPGMC linkage for clustering. """ - return calculate_clustering(triangular_distance_matrix, "median") + return calculate_clustering(condensed_distance_matrix, "median") -def upgmc_clustering(triangular_distance_matrix): +def upgmc_clustering(condensed_distance_matrix): """This calculates the centroid/UPGMC linkage for clustering. """ - return calculate_clustering(triangular_distance_matrix, "centroid") + return calculate_clustering(condensed_distance_matrix, "centroid") -def wpgma_clustering(triangular_distance_matrix): +def wpgma_clustering(condensed_distance_matrix): """This calculates the weighted/WPGMA linkage for clustering. """ - return calculate_clustering(triangular_distance_matrix,"weighted") + return calculate_clustering(condensed_distance_matrix,"weighted") -def upgma_clustering(triangular_distance_matrix): +def upgma_clustering(condensed_distance_matrix): """This calculates the average/UPGMA linkage for clustering. """ - return calculate_clustering(triangular_distance_matrix, "average") + return calculate_clustering(condensed_distance_matrix, "average") -def max_clustering(triangular_distance_matrix): +def max_clustering(condensed_distance_matrix): """This calculates the complete/max/farthest linkage for clustering. """ - return calculate_clustering(triangular_distance_matrix, "complete") + return calculate_clustering(condensed_distance_matrix, "complete") -def min_clustering(triangular_distance_matrix): +def min_clustering(condensed_distance_matrix): """This calculates the single/min/nearest linkage for clustering """ - return calculate_clustering(triangular_distance_matrix, "single") + return calculate_clustering(condensed_distance_matrix, "single") -def calculate_clustering(triangular_distance_matrix, method): +def calculate_clustering(condensed_distance_matrix, method): """This calculates the clustering for the given input method. """ - return cluster.linkage(triangular_distance_matrix, method=method) + return cluster.linkage(condensed_distance_matrix, method=method)